
Oracle Database 10g: SQL Tuning
Workshop
Electronic Presentation

D17265GC10

Edition 1.0

November 2004

D40051

Copyright © 2004, Oracle. All rights reserved.

This documentation contains proprietary information of Oracle Corporation. It is provided under a
license agreement containing restrictions on use and disclosure and is also protected by copyright
law. Reverse engineering of the software is prohibited. If this documentation is delivered to a U.S.
Government Agency of the Department of Defense, then it is delivered with Restricted Rights and the
following legend is applicable:

Restricted Rights Legend

Use, duplication or disclosure by the Government is subject to restrictions for commercial computer
software and shall be deemed to be Restricted Rights software under Federal law, as set forth in
subparagraph (c)(1)(ii) of DFARS 252.227-7013, Rights in Technical Data and Computer Software
(October 1988).

This material or any portion of it may not be copied in any form or by any means without the express
prior written permission of Oracle Corporation. Any other copying is a violation of copyright law and
may result in civil and/or criminal penalties.

If this documentation is delivered to a U.S. Government Agency not within the Department of
Defense, then it is delivered with “Restricted Rights,” as defined in FAR 52.227-14, Rights in Data-
General, including Alternate III (June 1987).

The information in this document is subject to change without notice. If you find any problems in the
documentation, please report them in writing to Education Products, Oracle Corporation, 500 Oracle
Parkway, Redwood Shores, CA 94065. Oracle Corporation does not warrant that this document is
error-free.

Oracle and all references to Oracle Products are trademarks or registered trademarks of Oracle
Corporation.

All other products or company names are used for identification purposes only, and may be
trademarks of their respective owners.

Author

Priya Vennapusa

Technical Contributors and
Reviewers

Andrew Brannigan
Cecelia Gervasio
Chika Izumi
Connie Green
Dairy Chan
Donna Keesling
Graham Wood
Harald Van Breederode
Helen Robertson
Janet Stern
Jean Francois Verrier
Joel Goodman
Lata Shivaprasad
Lawrence Hopper
Lillian Hobbs
Marcelo Manzano
Martin Jensen
Mughees Minhas
Ric Van Dyke
Robert Bungenstock
Russell Bolton
Dr. Sabine Teuber
Stefan Lindblad

Editor

Richard Wallis

Publisher

S. Domingue

Copyright © 2004, Oracle. All rights reserved.

Course Overview

I-2 Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Describe course objectives
• Describe course schedule

I-3 Copyright © 2004, Oracle. All rights reserved.

Course Objectives

Proactive Tuning:
• Describe the basic steps in processing SQL

statements
• Describe the causes of performance problems
• Understand where SQL tuning fits in an overall

tuning methodology
• Influence the physical data model so as to avoid

performance problems
• Understand query optimizer behavior
• Influence the optimizer behavior

I-4 Copyright © 2004, Oracle. All rights reserved.

Course Objectives

Reactive Tuning:
• Use the diagnostic tools to gather information

about SQL statement processing
• Describe Automatic SQL Tuning
• Describe alternative methods of accessing data

I-5 Copyright © 2004, Oracle. All rights reserved.

Course Schedule

Workshop 1

2
8. Application Tracing
7. Generating Execution Plans
6. Execution Plans
5. Optimizer Operations
4. Introducing the optimizer

3. Designing and developing for
performance

2. Following a tuning methodology
1. Oracle Database Architecture1
LessonDay

I-6 Copyright © 2004, Oracle. All rights reserved.

Course Schedule

11. Using Indexes3

Workshop 6 and Optional Workshop 7
14. Matrialized Views
Workshop 5
13. Using Hints
Workshop 3 and 4
12. Different Types of Indexes

Workshop 2
10. Automatic SQL Tuning
9. Identifying High load SQL2
LessonDay

I-7 Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned to:
• Describe course objectives
• Describe course schedule

Copyright © 2004, Oracle. All rights reserved.

Oracle Database Architecture: Overview

1-2 Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to:
• Describe the Oracle Database architecture and

components
• Make qualified decisions about your tuning

actions

1-3 Copyright © 2004, Oracle. All rights reserved.

Oracle Database Architecture: Overview

• The Oracle Database consists of two main
components:
– The database: physical structures
– The instance: memory structures

• The size and structure of these components
impact performance.

1-4 Copyright © 2004, Oracle. All rights reserved.

Oracle Instance Management

System
Monitor
SMON

Database
Writer
DBW0

Log
Writer
LGWR

Process
Monitor
PMON

Archiver
ARC0

Check
point
CKPT

SGA

Java pool

Shared pool Large poolStreams pool

Redo log
buffer

Database
buffer cache

Control
file Data

files
Redo log

files

Archived
redo log

files

1-5 Copyright © 2004, Oracle. All rights reserved.

Database Physical Structure

Data files Online redo log files

Password fileParameter file Archive log files

Control files

1-6 Copyright © 2004, Oracle. All rights reserved.

Oracle Memory Structures

SGA

Java Pool

Shared pool Large poolStreams pool

Redo log
buffer

Database
buffer cache

Server
process 1

PGA

Server
process 2

PGA

Server
process 3

PGA

1-8 Copyright © 2004, Oracle. All rights reserved.

SGA

Java pool

Fixed SGA

Redo log
buffer

Database
buffer cache

Automatic Shared Memory Management

Which size to choose?

Large poolShared pool

1-9 Copyright © 2004, Oracle. All rights reserved.

Shared Pool

The shared pool consists of:
• Data dictionary cache containing information on

objects, storage, and privileges
• Library cache containing information such as SQL

statements, parsed or compiled PL/SQL blocks, and
Java classes

Appropriate sizing of the shared pool affects performance
by:
• Reducing disk reads
• Allowing shareable SQL code
• Reducing parsing, thereby saving CPU resources
• Reducing latching overhead, thereby improving

scalability

1-10 Copyright © 2004, Oracle. All rights reserved.

Shared SQL Areas

SGA Shared SQL

Cursor for
SELECT statement 2

Cursor for
SELECT statement 1

User A User B User C

SELECT
statement 1

SELECT
statement 2

SELECT
statement 1

1-11 Copyright © 2004, Oracle. All rights reserved.

Program Global Area (PGA)

• PGA is a memory area that contains:
– Session information
– Cursor information
– SQL execution work areas

Sort area
Hash join area
Bitmap merge area
Bitmap create area

• Work area size influences SQL performance.
• Work areas can be automatically or manually

managed.

1-13 Copyright © 2004, Oracle. All rights reserved.

Automated SQL Execution Memory (PGA)
Management

• Allocation and tuning of PGA memory is simplified
and improved.
– Efficient memory allocation for varying workloads
– Queries optimized for both throughput and

response times
• DBAs can use parameters to specify the policy for

PGA sizing.

1-14 Copyright © 2004, Oracle. All rights reserved.

Connecting to an Instance

User Server

ServerUser

Client

User Server

Oracle database

ServerApplication server

Browser

1-16 Copyright © 2004, Oracle. All rights reserved.

SQL Statement Processing Phases

CloseOpen

FetchBindParse Execute

1-17 Copyright © 2004, Oracle. All rights reserved.

SQL Statement Processing Phases: Parse

• Parse phase:
– Searches for the statement in the shared pool
– Checks syntax
– Checks semantics and privileges
– Merges view definitions and subqueries
– Determines execution plan

• Minimize parsing as much as possible:
– Parse calls are expensive.
– Avoid reparsing
– Parse once, execute many times

1-19 Copyright © 2004, Oracle. All rights reserved.

SQL Statement Processing Phases: Bind

• Bind phase:
– Checks the statement for bind variables
– Assigns or reassigns a value to the bind variable

• Bind variables impact performance when:
– They are not used, and your statement would

benefit from a shared cursor
– They are used, and your statement would benefit

from a different execution plan

1-20 Copyright © 2004, Oracle. All rights reserved.

SQL Statement Processing Phases:
Execute and Fetch

• Execute phase:
– Executes the SQL statement
– Performs necessary I/O and sorts for data

manipulation language (DML) statements
• Fetch phase:

– Retrieves rows for a query
– Sorts for queries when needed
– Uses an array fetch mechanism

1-21 Copyright © 2004, Oracle. All rights reserved.

Processing a DML Statement

Database

Data
files

Control
files

Redo
log files

UPDATE
employees ...

User
process

SGA
Database

buffer cache

Shared pool

Redo log
bufferServer

process
3

1

4

2

1-23 Copyright © 2004, Oracle. All rights reserved.

Instance

COMMIT Processing

Database

Data
files

Control
files

Redo
log files LGWR

User
process

SGA
Database

buffer cache

Shared pool

Redo log
bufferServer

process

1-25 Copyright © 2004, Oracle. All rights reserved.

Functions of the Oracle Query Optimizer

The Oracle query optimizer determines the most
efficient execution plan and is the most important step
in the processing of any SQL statement.
The optimizer:
• Evaluates expressions and conditions
• Uses object and system statistics
• Decides how to access the data
• Decides how to join tables
• Decides which path is most efficient

1-26 Copyright © 2004, Oracle. All rights reserved.

Top Database Performance Issues

• Bad connection management
• Poor use of cursors and the shared pool
• Bad SQL
• Nonstandard initialization parameters
• I/O issues
• Long full-table scans
• In-disk sorts
• High amounts of recursive SQL
• Schema errors and optimizer problems

1-28 Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned about the
Oracle Database architecture and various components
that require tuning.

Copyright © 2004, Oracle. All rights reserved.

Following a Tuning Methodology

2-2 Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Determine performance problems
• Manage performance
• Describe tuning methodologies
• Identify goals for tuning
• Describe automatic SQL tuning features
• List manual SQL tuning steps

2-3 Copyright © 2004, Oracle. All rights reserved.

Performance Problems

• Inadequate consumable resources
– CPU
– I/O
– Memory (may be detected as an I/O problem)
– Data communications resources

• High-load SQL
• Contention

2-4 Copyright © 2004, Oracle. All rights reserved.

Factors to Be Managed

• Schema
– Data design
– Indexes

• Application
– SQL statements
– Procedural code

• Instance
• Database
• User expectations
• Hardware and network tuning

2-6 Copyright © 2004, Oracle. All rights reserved.

Tuning Goals

• Reduce the response time
• Reduce resource usage

2-8 Copyright © 2004, Oracle. All rights reserved.

Overview of SQL Tuning

1. Identify causes of poor performance.
2. Identify problematic SQL.

• Automatic: ADDM, Top SQL
• Manual: V$ views, statspack

3. Apply a tuning method.
• Manual tuning
• Automatic SQL tuning

4. Implement changes to:
• SQL statement constructs
• Access structures such as indexes

2-9 Copyright © 2004, Oracle. All rights reserved.

Identifying High-Load SQL

Identify high-load or
problematic SQL

• Dynamic performance views
• Statspack

• ADDM
• Top SQL report

2-10 Copyright © 2004, Oracle. All rights reserved.

Manual Tuning

1. Gather information about the referenced objects.
2. Gather optimizer statistics.
3. Review execution plans.
4. Restructure SQL statements.
5. Restructure indexes and create materialized views.
6. Maintain execution plans.

2-11 Copyright © 2004, Oracle. All rights reserved.

Gather Information About
Referenced Objects

• SQL text
• Structure of tables and indexes
• Optimizer statistics
• Views
• Optimizer plan: current and prior

2-12 Copyright © 2004, Oracle. All rights reserved.

Gathering Optimizer Statistics

• Gather statistics for all tables.
• Gather new statistics when existing statistics

become stale.

2-14 Copyright © 2004, Oracle. All rights reserved.

Reviewing the Execution Plan

• Driving table has the best filter.
• Fewest number of rows are being returned to the

next step.
• The join method is appropriate for the number of

rows being returned.
• Views are used efficiently.
• There are no unintentional Cartesian products.
• Each table is being accessed efficiently.
• Examine the predicates in the SQL statement and

the number of rows in the table.
• A full table scan does not mean inefficiency.

2-16 Copyright © 2004, Oracle. All rights reserved.

Restructuring the SQL Statements

• Compose predicates by using AND and = .
• Avoid transformed columns in the WHERE clause.
• Avoid mixed-mode expressions and beware of

implicit type conversions.
• Write separate SQL statements for specific tasks

and use SQL constructs appropriately.
• Use EXISTS or IN for subqueries as required.
• Cautiously change the access path and join order

with hints.

2-18 Copyright © 2004, Oracle. All rights reserved.

Restructuring the Indexes

• Remove unnecessary indexes to speed the DML.
• Index the performance-critical access paths.
• Reorder columns in existing concatenated

indexes.
• Add columns to the index to improve selectivity.
• Create appropriate indexes based on usage type:

– B*tree
– Bitmap
– Bitmap join
– Concatenated

• Consider index-organized tables.

2-19 Copyright © 2004, Oracle. All rights reserved.

Maintaining Execution Plans over Time

• Stored outlines
• Stored statistics
• Locking statistics

2-20 Copyright © 2004, Oracle. All rights reserved.

Automatic SQL Tuning

• Automatic SQL tuning facilitates these steps:
– Gather information on the referenced objects.
– Verify optimizer statistics.
– Review execution plans.
– Restructure SQL statements
– Restructure indexes and create materialized views.
– Maintain execution plans.

• Four types of analysis are performed in automatic
SQL tuning:
– Statistics analysis
– SQL profiling
– Access path analysis
– SQL structure analysis

2-22 Copyright © 2004, Oracle. All rights reserved.

Automatic Tuning Mechanisms

You can perform automatic SQL tuning using:
• SQL Tuning Advisor
• SQL Access advisor

2-23 Copyright © 2004, Oracle. All rights reserved.

SQL Tuning Advisor

The SQL Tuning Advisor does the following:
• Accepts input from:

– Automatic Database Diagnostic Monitor (ADDM)
– Automatic Workload Repository (AWR)
– Cursor cache
– Custom SQL as defined by the user

• Provides:
– Recommendations
– Rationale
– Expected benefits
– SQL commands for implementing the

recommendations

2-24 Copyright © 2004, Oracle. All rights reserved.

SQL Access Advisor

The SQL Access Advisor does the following:
• Provides comprehensive advice on schema

design by accepting input from:
– Cursor cache
– Automatic Workload Repository (AWR)
– User-defined workload
– Hypothetical workload if a schema contains

dimensions or primary/foreign key relationships
• Analyzes the entire workload and recommends:

– Creating new indexes as needed
– Dropping any unused indexes
– Creating new materialized views and materialized

view logs

2-25 Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Manage performance

– Start early; be proactive
– Set measurable objectives
– Monitor requirements compliance
– Handle exceptions and changes

• Identify performance problems
– Inadequate consumable resources
– Inadequate design resources
– Critical resources
– Excessive demand

2-26 Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Tune SQL statements

– Analyze the results at each step
– Tune the physical schema
– Choose when to use SQL
– Reuse SQL statements when possible
– Design and tune the SQL statement
– Get maximum performance with the optimizer

Copyright © 2004, Oracle. All rights reserved.

Designing and Developing
for Performance

3-2 Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to
describe the basic steps involved in designing and
developing for performance.

3-3 Copyright © 2004, Oracle. All rights reserved.

Understanding Scalability

• Scalability is a system’s ability to process more
workload, with a proportional increase in system
resource use.

• Poor scalability leads to system resource
exhaustion to the extent that additional
throughput is impossible when the system’s
workload is increased.

3-4 Copyright © 2004, Oracle. All rights reserved.

Scalability with Application Design,
Implementation, and Configuration

Applications have a significant impact on scalability.
• Poor schema design can cause expensive SQL

that does not scale.
• Poor transaction design can cause locking and

serialization problems.
• Poor connection management can cause

unsatisfactory response times and unreliable
systems.

3-5 Copyright © 2004, Oracle. All rights reserved.

Configuring the Appropriate System
Architecture for Your Requirements

• Interactive applications (OLTP)
• Process-driven applications (OLAP)

3-6 Copyright © 2004, Oracle. All rights reserved.

Proactive Tuning Methodology

• Simple design
• Data modeling
• Tables and indexes
• Using views
• Writing efficient SQL
• Cursor sharing
• Using bind variables
• SQL versus PL/SQL
• Dynamic SQL

3-7 Copyright © 2004, Oracle. All rights reserved.

Simplicity In Application Design

• Simple tables
• Well-written SQL
• Indexing only as required
• Retrieving only required information

3-8 Copyright © 2004, Oracle. All rights reserved.

Data Modeling

• Accurately represent business practices
• Focus on the most frequent and important

business transactions
• Use modeling tools
• Normalize the data

3-9 Copyright © 2004, Oracle. All rights reserved.

Table Design

• Compromise between flexibility and performance
– Principally normalize
– Selectively denormalize

• Use Oracle performance features
– Default values
– Check constraints
– Materialized views
– Clusters

• Focus on business-critical tables

3-10 Copyright © 2004, Oracle. All rights reserved.

Index Design

• Index keys
– Primary key
– Unique key
– Foreign keys

• Index data that is frequently queried
• Use SQL as a guide to index design

3-12 Copyright © 2004, Oracle. All rights reserved.

Using Views

• Simplifies application design
• Is transparent to the end user
• Can cause suboptimal execution plans

3-13 Copyright © 2004, Oracle. All rights reserved.

SQL Execution Efficiency

• Good database connectivity
• Using cursors
• Minimizing parsing
• Using bind variables

3-14 Copyright © 2004, Oracle. All rights reserved.

Importance of Sharing Cursors

• Reduces parsing
• Dynamically adjusts memory
• Improves memory usage

3-15 Copyright © 2004, Oracle. All rights reserved.

Writing SQL to Share Cursors

• Create generic code using the following:
– Stored procedures and packages
– Database triggers
– Any other library routines and procedures

• Write to format standards:
– Case
– White space
– Comments
– Object references
– Bind variables

3-16 Copyright © 2004, Oracle. All rights reserved.

Controlling Shared Cursors

The CURSOR_SHARING initialization parameter can be
set to:
• EXACT (default)
• SIMILAR (not recommended)
• FORCE

3-17 Copyright © 2004, Oracle. All rights reserved.

Performance Checklist

• Set initialization parameters and storage options.
• Verify resource usage of SQL statements.
• Validate connections by middleware.
• Verify cursor sharing.
• Validate migration of all required objects.
• Verify validity and availability of optimizer

statistics.

3-18 Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned the basic steps
that are involved in designing and developing for
performance.

Copyright © 2004, Oracle. All rights reserved.

Introduction to the Optimizer

4-2 Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Describe the functions of the Oracle optimizer
• Identify the factors influencing the optimizer
• Set the optimizer approach at the instance and

session level

4-3 Copyright © 2004, Oracle. All rights reserved.

Oracle Optimizer

The optimizer creates an execution plan for every SQL
statement by:
• Evaluating expressions and conditions
• Using object and system statistics
• Deciding how to access the data
• Deciding how to join tables
• Deciding which path is most efficient
• Comparing the cost for execution of different

plans
• Determining the least-cost plan

4-5 Copyright © 2004, Oracle. All rights reserved.

Functions of the Query Optimizer

Query
transformer

Estimator

Plan
generator

Parsed query
(from parser)

Query plan
(to row-source generator)

Dictionary
Statistics

Transformed query

Query + estimates

4-7 Copyright © 2004, Oracle. All rights reserved.

Selectivity

• Selectivity represents a fraction of rows from a
row set.

• Selectivity lies in a value range from 0.0 to 1.0.
• When statistics are available, the estimator uses

them to estimate selectivity.
• With histograms on columns that contain skewed

data, the results are good selectivity estimates.

4-8 Copyright © 2004, Oracle. All rights reserved.

Cardinality and Cost

• Cardinality represents the number of rows in a row
set.

• Cost represents the units of work or resource that
are used.

4-9 Copyright © 2004, Oracle. All rights reserved.

Query Optimizer Statistics in
the Data Dictionary

• The Oracle optimizer requires statistics to
determine the best execution plan.

• Statistics
– Stored in the data dictionary tables
– Must be true representations of data
– Gathered using:

DBMS_STATS package
Dynamic sampling

4-10 Copyright © 2004, Oracle. All rights reserved.

Enabling Query Optimizer Features

• The optimizer behavior can be set to prior releases
of the database.

• The OPTIMIZER_FEATURES_ENABLE initialization
parameter can be set to values of different
database releases (such as 8.1.7 or 10.0.0).

• Example:

OPTIMIZER_FEATURES_ENABLE=9.2.0;

4-11 Copyright © 2004, Oracle. All rights reserved.

Controlling the Behavior of the Optimizer

Optimizer behavior can be controlled using the
following initialization parameters:
• CURSOR_SHARING

• DB_FILE_MULTIBLOCK_READ_COUNT

• OPTIMIZER_INDEX_CACHING

• OPTIMIZER_INDEX_COST_ADJ

• OPTIMIZER_MODE

• PGA_AGGREGATE_TARGET

4-13 Copyright © 2004, Oracle. All rights reserved.

Choosing an Optimizer Approach

• OPTIMIZER_MODE initialization parameter
• OPTIMIZER_MODE parameter of ALTER SESSION

statement
• Optimizer statistics in the data dictionary
• Optimizer SQL hints for influencing the optimizer

decision

4-14 Copyright © 2004, Oracle. All rights reserved.

Setting the Optimizer Approach

• At the instance level, set the following parameter:

• For a session, use the following SQL command:

OPTIMIZER_MODE = {FIRST_ROWS(_n)|ALL_ROWS}

ALTER SESSION SET optimizer_mode =
{first_rows(_n)|all_rows}

4-15 Copyright © 2004, Oracle. All rights reserved.

Optimizing for Fast Response

• OPTIMIZER_MODE is set to FIRST_ROWS or
FIRST_ROWS_n, where n is 1, 10, 100, or 1000.

• This approach is suitable for online users.
• The optimizer generates a plan with the lowest

cost to produce the first row or the first few rows.
• The value of n should be chosen based on the

online user requirement (specifically, how the
result is displayed to the user).

• The optimizer explores different plans and
computes the cost to produce the first n rows for
each plan.

4-17 Copyright © 2004, Oracle. All rights reserved.

Optimizing SQL Statements

Best throughput
• Time required to complete the request
• Suitable for:

– Batch processing
– Report applications

Fast response
• Time for retrieving the first rows
• Suitable for:

– Interactive applications
– Web-based or GUI applications

4-18 Copyright © 2004, Oracle. All rights reserved.

How the Query Optimizer
Executes Statements

The factors considered by the optimizer are:
• Access path
• Join method
• Join order

4-19 Copyright © 2004, Oracle. All rights reserved.

Access Paths

• Full-table scans
• Row ID scans
• Index scans
• Cluster scans
• Hash scans

4-20 Copyright © 2004, Oracle. All rights reserved.

Join Orders

A join order is the order in which different join items
(such as tables) are accessed and joined together.

4-21 Copyright © 2004, Oracle. All rights reserved.

Join Methods

The different join methods considered by the optimizer
are:
• Nested-loop join
• Hash join
• Sort-merge join
• Cartesian join

4-22 Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned about:
• Functions of the optimizer
• Cost factors that are considered by the optimizer
• Setting the optimizer approach

Copyright © 2004, Oracle. All rights reserved.

Optimizer Operations

5-2 Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Describe different access paths
• Optimize sort performance
• Describe different join techniques
• Explain join optimization
• Find optimal join execution plans

5-3 Copyright © 2004, Oracle. All rights reserved.

Review: How the Query Optimizer
Executes Statements

The factors considered by the optimizer are:
• Access path
• Join order
• Join method

5-4 Copyright © 2004, Oracle. All rights reserved.

Access Paths

• Full table scan
• Row ID scan
• Index scan
• Sample table scan

5-5 Copyright © 2004, Oracle. All rights reserved.

Choosing an Access Path

• Available access paths for the statement
• Estimated cost of executing the statement, using

each access path or combination of paths

5-6 Copyright © 2004, Oracle. All rights reserved.

Full Table Scans

• Lack of index
• Large amount of data
• Small table

5-8 Copyright © 2004, Oracle. All rights reserved.

Row ID Scans

• The row ID specifies the data file and data block
containing the row as well as the location of the
row in that block.

• Using the row ID is the fastest way to retrieve a
single row.

• Every index scan does not imply access by row ID.

5-9 Copyright © 2004, Oracle. All rights reserved.

Index Scans

Types of index scans:
• Index unique scan
• Index range scan
• Index range scan descending
• Index skip scan

5-11 Copyright © 2004, Oracle. All rights reserved.

Index Scans

Types of index scans:
• Full scan
• Fast-full index scan
• Index join
• Bitmap join

5-13 Copyright © 2004, Oracle. All rights reserved.

Joining Multiple Tables

You can join only two row sources at a time. Joins
with more than two tables are executed as follows:
1. Two tables are joined, resulting in a row source.
2. The next table is joined with the row source that

results from step 1.
3. Step 2 is repeated until all tables are joined.

5-14 Copyright © 2004, Oracle. All rights reserved.

Join Terminology

• Join statement
• Join predicate, nonjoin predicate
• Single-row predicate
SELECT c.cust_last_name,c.cust_first_name,

co.country_id, co.country_name
FROM customers c JOIN countries co
ON (c.country_id = co.country_id)
AND (co.country_id = '52790'
OR c.cust_id = 205);

Join predicate

Nonjoin predicate

Single-row predicate

5-15 Copyright © 2004, Oracle. All rights reserved.

Join Terminology

• Natural join

• Join with nonequal predicate

SELECT c.cust_last_name, co.country_name
FROM customers c NATURAL JOIN countries co;

SELECT s.amount_sold, p.promo_name
ON(s.time_id
From sales s, promotions p
BETWEEN p.promo_begin_date
AND p.promo_end_date);

• Cross join
SELECT *
FROM customers c CROSS JOIN countries co;

5-16 Copyright © 2004, Oracle. All rights reserved.

SQL:1999 Outer Joins

• Plus (+) sign is not used.
• Keyword OUTER JOIN is used instead.

SELECT s.time_id, t.time_id
FROM sales s
RIGHT OUTER JOIN times t
ON (s.time_id = t.time_id);

5-17 Copyright © 2004, Oracle. All rights reserved.

Oracle Proprietary Outer Joins

• Join predicates with a plus (+) sign
• Nonjoin predicates with a plus (+) sign
• Predicates without a plus (+) sign disable outer

joins

SELECT s.time_id, t.time_id
FROM sales s, times t
WHERE s.time_id (+) = t.time_id;

5-18 Copyright © 2004, Oracle. All rights reserved.

Full Outer Joins

• A full outer join acts like a combination of the left
and right outer joins.

• In addition to the inner join, rows in both tables
that have not been returned in the result of the
inner join are preserved and extended with nulls.

SELECT c.cust_id, c.cust_last_name
, co.country_name
FROM customers c
FULL OUTER JOIN countries co
ON (c.country_id = co.country_id);

5-19 Copyright © 2004, Oracle. All rights reserved.

Execution of Outer Joins

Indexes can be used for outer join predicates.

SELECT c.cust_id, co.country_name
FROM customers c
LEFT OUTER JOIN countries co
ON (c.country_id = co.country_id)
AND co.country_id = 'IT';

5-20 Copyright © 2004, Oracle. All rights reserved.

Join Order Rules

Rule 2

For outer joins, the table with the outer-joined table
must come after the other table in the join order for
processing the join.

Rule 1

A single-row predicate forces its row source to be
placed first in the join order.

5-21 Copyright © 2004, Oracle. All rights reserved.

Join Optimization

• As a first step, a list of possible join orders is
generated.

• This potentially results in the following:

• Parse time grows factorially when adding tables to
a join.

Number of Tables Join Orders
---------------- -----------
2 2! = 2
3 3! = 6
4 4! = 24

5-22 Copyright © 2004, Oracle. All rights reserved.

Join Methods

• A join operation combines the output from two
row sources and returns one resulting row source.

• Join operation types include the following:
– Nested loop join
– Sort-merge join
– Hash join

5-23 Copyright © 2004, Oracle. All rights reserved.

Nested Loop Joins

• One of the two tables is defined as the outer table
(or the driving table).

• The other table is called the inner table.
• For each row in the outer table, all matching rows

in the inner table are retrieved.

For each row in the outer table

For each row in the inner table

Check for a match

5-24 Copyright © 2004, Oracle. All rights reserved.

Nested Loop Join Plan

Nested loops

Table access
(Outer/driving table)

Table access
(Inner table)

1

2 3

5-25 Copyright © 2004, Oracle. All rights reserved.

When Are Nested Loop Joins Used?

Nested loop joins are used when:
• Joining a few rows that have a good driving

condition
• Order of tables is important
• USE_NL(table1 table2)hint is used

5-26 Copyright © 2004, Oracle. All rights reserved.

Hash Joins

A hash join is executed as follows:
• Both tables are split into as many partitions as

required, using a full table scan.
• For each partition pair, a hash table is built in

memory on the smallest partition.
• The other partition is used to probe the hash table.

5-27 Copyright © 2004, Oracle. All rights reserved.

Hash Join Plan

Hash join

Table access Table access

1

2 3

5-28 Copyright © 2004, Oracle. All rights reserved.

When Are Hash Joins Used?

• Hash joins are used if either of the following
conditions is true:
– A large amount of data needs to be joined.
– A large fraction of the table needs to be joined.

• Use the USE_HASH hint.

5-29 Copyright © 2004, Oracle. All rights reserved.

Sort-Merge Joins

A sort-merge join is executed as follows:
1. The rows from each row source are sorted

on the join predicate columns.
2. The two sorted row sources are then merged

and returned as the resulting row source.

5-30 Copyright © 2004, Oracle. All rights reserved.

Sort-Merge Join Plan

Merge

Sort Sort

Table access Table access

1

2 3

4 5

5-31 Copyright © 2004, Oracle. All rights reserved.

When Are Sort-Merge Joins Used?

Sort-merge joins can be used if either of the following
conditions is true:
• Join condition is not an equijoin.
• Sorts are required for other operations.

5-32 Copyright © 2004, Oracle. All rights reserved.

Star Joins

Facts
table

Dimension
tables

SALES

PRODUCTS

CHANNELS PROMOTIONS TIMES

CUSTOMERS

5-33 Copyright © 2004, Oracle. All rights reserved.

How the Query Optimizer Chooses
Execution Plans for Joins

The query optimizer determines:
• Row sources
• Type of join
• Join method
• Cost of execution plans
• Other costs such as:

– I/O
– CPU time
– DB_FILE_MULTIBLOCK_READ_COUNT

• Hints specified

5-35 Copyright © 2004, Oracle. All rights reserved.

Subqueries and Joins

• Subqueries (like joins) are statements that
reference multiple tables

• Subquery types:
– Noncorrelated subquery
– Correlated subquery
– NOT IN subquery (antijoin)
– EXISTS subquery (semijoin)

5-38 Copyright © 2004, Oracle. All rights reserved.

Sort Operations

• SORT UNIQUE

• SORT AGGREGATE

• SORT GROUP BY

• SORT JOIN

• SORT ORDER BY

5-39 Copyright © 2004, Oracle. All rights reserved.

Tuning Sort Performance

• Because sorting large sets can be expensive, you
should tune sort parameters.

• Note that DISTINCT, GROUP BY, and most set
operators cause implicit sorts.

• Minimize sorting by one of the following:
– Try to avoid DISTINCT and GROUP BY.
– Use UNION ALL instead of UNION.
– Enable index access to avoid sorting.

5-40 Copyright © 2004, Oracle. All rights reserved.

Top-N SQL

SELECT *
FROM (SELECT prod_id

, prod_name
, prod_list_price
, prod_min_price

FROM products
ORDER BY prod_list_price DESC)

WHERE ROWNUM <= 5;

5-41 Copyright © 2004, Oracle. All rights reserved.

Memory and Optimizer Operations

• Memory-intensive operations use up work areas in
the Program Global Area (PGA).

• Automatic PGA memory management simplifies
and improves the way PGA memory is allocated.

• The size of a work area must be big enough to
avoid multi-pass execution.

• A reasonable amount of PGA memory allows
single-pass executions.

• The size of PGA is controlled with:
– PGA_AGGREGATE_TARGET

– WORKAREA_SIZE_POLICY

5-42 Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Describe available join operations
• Optimize join performance against different

requirements
• Influence the join order
• Explain why tuning joins is more complicated than

tuning single table statements

Copyright © 2004, Oracle. All rights reserved.

Execution Plans

6-2 Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Use the EXPLAIN PLAN command to show how a

statement is processed
• Use the DBMS_XPLAN package
• Use the Automatic Workload Repository
• Query the V$SQL_PLAN performance view
• Use the SQL*Plus AUTOTRACE setting to show SQL

statement execution plans and statistics

6-3 Copyright © 2004, Oracle. All rights reserved.

What Is an Execution Plan?

An execution plan is a set of steps that are performed
by the optimizer in executing a SQL statement and
performing an operation.

6-4 Copyright © 2004, Oracle. All rights reserved.

Methods for Viewing Execution Plans

• EXPLAIN PLAN

• SQL Trace
• Statspack
• Automatic Workload Repository
• V$SQL_PLAN

• SQL*Plus AUTOTRACE

6-6 Copyright © 2004, Oracle. All rights reserved.

Using Execution Plans

• Determining the current execution plan
• Identifying the effect of indexes
• Determining access paths
• Verifying the use of indexes
• Verifying which execution plan may be used

6-7 Copyright © 2004, Oracle. All rights reserved.

DBMS_XPLAN Package: Overview

• The DBMS_XPLAN package provides an easy way to
display the output from:
– EXPLAIN PLAN command
– Automatic Workload Repository (AWR)
– V$SQL_PLAN and V$SQL_PLAN_STATISTICS_ALL

fixed views
• The DBMS_XPLAN package supplies three table

functions that can be used to retrieve and display
the execution plan:
– DISPLAY

– DISPLAY_CURSOR

– DISPLAY_AWR

6-9 Copyright © 2004, Oracle. All rights reserved.

EXPLAIN PLAN Command

• Generates an optimizer execution plan
• Stores the plan in the PLAN table
• Does not execute the statement itself

6-10 Copyright © 2004, Oracle. All rights reserved.

EXPLAIN PLAN Command

SET STATEMENT_ID
= 'text'

EXPLAIN PLAN

INTO your plan table

FOR statement

6-11 Copyright © 2004, Oracle. All rights reserved.

EXPLAIN PLAN Command: Example

EXPLAIN PLAN

SET STATEMENT_ID = 'demo01' FOR

SELECT e.last_name, d.department_name

FROM hr.employees e, hr.departments d

WHERE e.department_id = d.department_id;

Explained.

Note: The EXPLAIN PLAN command does not
actually execute the statement.

6-12 Copyright © 2004, Oracle. All rights reserved.

EXPLAIN PLAN Command: Output

Plan hash value: 2933537672

| Id | Operation | Name | Rows | Bytes | Cost (%CPU|
--
0	SELECT STATEMENT		106	2862	6 (17
1	MERGE JOIN		106	2862	6 (17
2	TABLE ACCESS BY INDEX ROWID	DEPARTMENTS	27	432	2 (0
3	INDEX FULL SCAN	DEPT_ID_PK	27		1 (0
* 4	SORT JOIN		107	1177	4 (25
5	TABLE ACCESS FULL	EMPLOYEES	107	1177	3 (0
--

Predicate Information (identified by operation id):

4 - access("E"."DEPARTMENT_ID"="D"."DEPARTMENT_ID")
filter("E"."DEPARTMENT_ID"="D"."DEPARTMENT_ID")

18 rows selected.

SELECT PLAN_TABLE_OUTPUT FROM TABLE(DBMS_XPLAN.DISPLAY());

6-13 Copyright © 2004, Oracle. All rights reserved.

Parse Tree

0

SELECT STATEMENT

SORT JOIN

1

2 4

3 5

MERGE JOIN

FULL TABLE SCAN

of EMPLOYEES

TABLE ACCESS BY
INDEX ROWID

of DEPARTMENTS

INDEX FULL SCAN
DEPT_ID_PK

6-14 Copyright © 2004, Oracle. All rights reserved.

Using the V$SQL_PLAN View

• V$SQL_PLAN provides a way of examining the
execution plan for cursors that were recently
executed.

• Information in V$SQL_PLAN is very similar to the
output of an EXPLAIN PLAN statement:
– EXPLAIN PLAN shows a theoretical plan that can be

used if this statement were to be executed.
– V$SQL_PLAN contains the actual plan used.

6-15 Copyright © 2004, Oracle. All rights reserved.

V$SQL_PLAN Columns

Note: This is only a partial listing of the columns.

HASH_VALUE

ADDRESS

CHILD_NUMBER

POSITION

PARENT_ID

ID

Hash value of the parent statement in the
library cache

Object number of the table or the index

Child cursor number using this execution plan

Order of processing for operations that all have
the same PARENT_ID

ID of the next execution step that operates on
the output of the current step

Number assigned to each step in the
execution plan

6-16 Copyright © 2004, Oracle. All rights reserved.

Querying V$SQL_PLAN

SQL_ID 47ju6102uvq5q, child number 0

SELECT e.last_name, d.department_name
FROM hr.employees e, hr.departments d WHERE
e.department_id =d.department_id

Plan hash value: 2933537672
--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU|
--
0	SELECT STATEMENT				6 (100
1	MERGE JOIN		106	2862	6 (17
2	TABLE ACCESS BY INDEX ROWID	DEPARTMENTS	27	432	2 (0
3	INDEX FULL SCAN	DEPT_ID_PK	27		1 (0
* 4	SORT JOIN		107	1177	4 (25
5	TABLE ACCESS FULL	EMPLOYEES	107	1177	3 (0
--
Predicate Information (identified by operation id):

4 - access("E"."DEPARTMENT_ID"="D"."DEPARTMENT_ID")
filter("E"."DEPARTMENT_ID"="D"."DEPARTMENT_ID")

24 rows selected.

SELECT PLAN_TABLE_OUTPUT FROM
TABLE(DBMS_XPLAN.DISPLAY_CURSOR('47ju6102uvq5q'));

6-17 Copyright © 2004, Oracle. All rights reserved.

V$SQL_PLAN_STATISTICS View

• V$SQL_PLAN_STATISTICS provides actual execution
statistics.

• V$SQL_PLAN_STATISTICS_ALL enables
side-by-side comparisons of the optimizer estimates.

6-18 Copyright © 2004, Oracle. All rights reserved.

Automatic Workload Repository

• Collects, processes, and maintains performance
statistics for problem-detection and self-tuning
purposes

• Statistics include:
– Object statistics
– Time-model statistics
– Some system and session statistics
– Active Session History (ASH) statistics

• Automatically generates snapshots of the
performance data

6-20 Copyright © 2004, Oracle. All rights reserved.

Managing AWR with PL/SQL

• Creating snapshots
• Dropping snapshots
• Managing snapshot settings

6-22 Copyright © 2004, Oracle. All rights reserved.

AWR Views

• V$ACTIVE_SESSION_HISTORY

• V$metric views
• DBA_HIST views:

– DBA_HIST_ACTIVE_SESS_HISTORY

– DBA_HIST_BASELINE
DBA_HIST_DATABASE_INSTANCE

– DBA_HIST_SNAPSHOT

– DBA_HIST_SQL_PLAN

– DBA_HIST_WR_CONTROL

6-23 Copyright © 2004, Oracle. All rights reserved.

Querying the AWR

SELECT PLAN_TABLE_OUTPUT FROM TABLE
(DBMS_XPLAN.DISPLAY_AWR('454rug2yva18w'));

PLAN_TABLE_OUTPUT
--
SQL_ID 454rug2yva18w

select /* example */ * from hr.employees natural join hr.departments

Plan hash value: 4179021502

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
0	SELECT STATEMENT				6 (100)	
1	HASH JOIN		11	968	6 (17)	00:00:01
2	TABLE ACCESS FULL	DEPARTMENTS	11	220	2 (0)	00:00:01
2	TABLE ACCESS FULL	DEPARTMENTS	11	220	2 (0)	00:00:01
3	TABLE ACCESS FULL	EMPLOYEES	107	7276	3 (0)	00:00:01
--

6-25 Copyright © 2004, Oracle. All rights reserved.

SQL*Plus AUTOTRACE

OFF

TRACE[ONLY]

EXPLAIN
STATISTICS

SHOW AUTOTRACE

SET AUTOTRACE ON

6-26 Copyright © 2004, Oracle. All rights reserved.

SQL*Plus AUTOTRACE: Examples

• To start tracing statements using AUTOTRACE

• To hide statement output

• To display execution plans only

• Control the layout with column settings

set autotrace on

set autotrace traceonly

set autotrace traceonly explain

6-27 Copyright © 2004, Oracle. All rights reserved.

SQL*Plus AUTOTRACE: Statistics

set autotrace traceonly statistics

SELECT *
FROM products;

Statistics
--

1 recursive calls
0 db block gets
9 consistent gets
3 physical reads
0 redo size

15028 bytes sent via SQL*Net to client
556 bytes received via SQL*Net from client

6 SQL*Net roundtrips to/from client
0 sorts (memory)
0 sorts (disk)

72 rows processed

6-28 Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Use EXPLAIN PLAN to view execution plans
• Query V$SQL_PLAN to see the execution plan for

cursors that were recently executed
• Use the Automatic Workload Repository
• Use SQL*Plus AUTOTRACE to run statements

and display execution plans and statistics

6-29 Copyright © 2004, Oracle. All rights reserved.

Practice 6: Overview

This practice covers the following topics:
• Using AUTOTRACE
• Using EXPLAIN PLAN
• Using AWR
• Retrieving the execution plan using DBMS_XPLAN

Copyright © 2004, Oracle. All rights reserved.

Gathering Statistics

7-2 Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Identify table, index, and column statistics
• Describe the Automatic Statistics Gathering

mechanism
• Use the DBMS_STATS package to collect statistics

manually
• Identify predicate selectivity calculations

7-3 Copyright © 2004, Oracle. All rights reserved.

What Are Optimizer Statistics?

• Collection of data that describes the database and
the objects in the database

• Information used by query optimizer to estimate:
– Selectivity of predicates
– Cost of each execution plan
– Access method and join method
– CPU and I/O costs

7-4 Copyright © 2004, Oracle. All rights reserved.

Types of Optimizer Statistics

• Object statistics
– Table statistics
– Column statistics
– Index statistics

• System statistics
– I/O performance and utilization
– CPU performance and utilization

7-6 Copyright © 2004, Oracle. All rights reserved.

How Statistics Are Gathered

• Automatic statistics gathering
– GATHER_STATS_JOB

• Manual statistics gathering
– DBMS_STATS package

• Dynamic sampling

7-7 Copyright © 2004, Oracle. All rights reserved.

Automatic Statistics Gathering

• Oracle Database 10g automates optimizer
statistics collection:
– Statistics are gathered automatically on all

database objects.
– GATHER_STATS_JOB is used for statistics collection

and maintenance.
– Scheduler interface is used for scheduling the

maintenance job.
• Automated statistics collection:

– Eliminates need for manual statistics collection
– Significantly reduces the chances of getting poor

execution plans

7-8 Copyright © 2004, Oracle. All rights reserved.

Manual Statistics Gathering

You can use the DBMS_STATS package to:
• Generate and manage statistics for use by the

optimizer
• Gather, modify, view, export, import, and delete

statistics
• Identify or name statistics that are gathered
• Gather statistics on:

– Indexes, tables, columns, and partitions
– All schema objects in a schema or database

• Gather statistics either serially or in parallel

7-9 Copyright © 2004, Oracle. All rights reserved.

Managing Automatic Statistics Collection

• Job configuration options
• Statistics-collection configuration options

7-10 Copyright © 2004, Oracle. All rights reserved.

Job Configuration Options

• Setting status: ENABLED or DISABLED
• Maintaining schedule: maintenance window

7-11 Copyright © 2004, Oracle. All rights reserved.

Managing the Job Scheduler

Verifying Automatic Statistics Gathering:
SELECT owner, job_name,enabled
FROM DBA_SCHEDULER_JOBS
WHERE JOB_NAME = 'GATHER_STATS_JOB';

BEGIN
DBMS_SCHEDULER.DISABLE('GATHER_STATS_JOB');
END;

/

BEGIN
DBMS_SCHEDULER.ENABLE('GATHER_STATS_JOB');
END;

/

Disabling and enabling Automatic Statistics Gathering:

7-12 Copyright © 2004, Oracle. All rights reserved.

Managing the Maintenance Window

• WEEKNIGHT_WINDOW

• WEEKEND_WINDOW

EXECUTE DBMS_SCHEDULER.SET_ATTRIBUTE(

'WEEKNIGHT_WINDOW',

'repeat_interval',

'freq=daily; byday= MON, TUE, WED, THU, FRI;
byhour=0; byminute=0; bysecond=0');

7-13 Copyright © 2004, Oracle. All rights reserved.

Changing the GATHER_STATS_JOB Schedule

7-14 Copyright © 2004, Oracle. All rights reserved.

Statistics Collection Configuration

• DML monitoring
• Sampling
• Degree of parallelism
• Histograms
• Cascade

7-15 Copyright © 2004, Oracle. All rights reserved.

DML Monitoring

• The DML monitoring facility:
– Tracks DML statements and truncation of tables
– Is used by the Automatic Statistics Gathering mechanism

for identifying segments with stale statistics
– Is enabled by default when STATISTICS_LEVEL is set to

TYPICAL or ALL
• You can:

– View the information on DML changes in the
USER_TAB_MODIFICATIONS view

– Use DBMS_STATS.FLUSH_DATABASE_MONITORING_INFO
to update the view with current information

– Use GATHER_DATABASE_STATS or
GATHER_SCHEMA_STATS for manual statistics gathering
for tables with stale statistics when OPTIONS is set to
GATHER STALE or GATHER AUTO

7-17 Copyright © 2004, Oracle. All rights reserved.

Sampling

• Statistics gathering relies on sampling to minimize
resource usage.

• You can use the ESTIMATE_PERCENT argument of
the DBMS_STATS procedures to change the
sampling percentage to any value.

• Set to DBMS_STATS.AUTO_SAMPLE_SIZE (default)
to maximize performance gains.

• AUTO_SAMPLE_SIZE enables the database to
determine the appropriate sample size for each
object automatically.

EXECUTE DBMS_STATS.GATHER_SCHEMA_STATS

('SH',DBMS_STATS.AUTO_SAMPLE_SIZE);

7-18 Copyright © 2004, Oracle. All rights reserved.

Degree of Parallelism

• Automatic Statistics Gathering operations can run
either serially or in parallel.

• By default, the degree of parallelism is determined
automatically.

• You can also manually specify the degree of
parallelism using the DEGREE argument of the
DBMS_STATS procedures.

• Setting the DEGREE parameter to
DBMS_STATS.AUTO_DEGREE (default) enables the
Oracle Database to choose an appropriate degree
of parallelism even when collecting statistics
manually.

7-19 Copyright © 2004, Oracle. All rights reserved.

Histograms

• Influence optimizer decisions on selecting the
optimal execution plan

• Provide improved selectivity estimates in the
presence of data skew

• Enable optimal execution plans with nonuniform
data distributions

12630
56740
24850

105020
1010

Count of
Rows

Column
Value

10 5020 30 40

Number of
buckets = 5

10 5020 30 40

7-20 Copyright © 2004, Oracle. All rights reserved.

Creating Histograms

• The Automatic Statistics Gathering mechanism
creates histograms as needed by default.

• You can use the DBMS_STATS package to change
this default.

• You can use DBMS_STATS to create histograms
manually.

• The following example shows how to create a
histogram with 50 buckets on PROD_LIST_PRICE:

EXECUTE dbms_stats.gather_table_stats
('sh','products',

method_opt => 'for columns size 50
prod_list_price');

7-22 Copyright © 2004, Oracle. All rights reserved.

Viewing Histogram Statistics

SELECT column_name, num_distinct,
num_buckets, histogram

FROM USER_TAB_COL_STATISTICS
WHERE histogram <> 'NONE';

SELECT column_name, num_distinct,
num_buckets, histogram

FROM USER_TAB_COL_STATISTICS
WHERE column_name = 'PROD_LIST_PRICE';

1

2

7-23 Copyright © 2004, Oracle. All rights reserved.

Histogram Tips

• The default option for DBMS_STATS
METHOD_OPTS is FOR ALL COLUMNS SIZE
AUTO, which enables automatic creation of
histograms as needed.

• Alternatively, you can create histograms
manually:
– On skewed columns that are used frequently in WHERE

clauses of queries
– On columns that have a highly skewed data distribution

7-24 Copyright © 2004, Oracle. All rights reserved.

• Do not use histograms unless they
substantially improve performance.
– Histograms allocate additional storage.
– Histograms, like all other optimizer statistics, are static.
– Recompute the histogram when the data distribution of a

column changes frequently.
– For queries with bind variables

Histogram Tips

7-25 Copyright © 2004, Oracle. All rights reserved.

Bind Variable Peeking

• The optimizer peeks at the values of bind variables
on the first invocation of a cursor.

• This is done to determine the selectivity of the
predicate.

• Peeking does not occur for subsequent
invocations of the cursor.

• Cursor is shared, based on the standard cursor-
sharing criteria even for different bind values.

7-26 Copyright © 2004, Oracle. All rights reserved.

Cascading to Indexes

• The Automatic Statistics Gathering mechanism is
configured by default to gather index statistics
while gathering statistics on the parent tables.

• You can change the default behavior by modifying
the CASCADE option of the DBMS_STATS package.

• Set the CASCADE option to:
– TRUE to gather index statistics
– DBMS_STATS.AUTO_CASCADE to have the Oracle

Database determine whether index statistics are to
be collected or not

7-27 Copyright © 2004, Oracle. All rights reserved.

Managing Statistics Collection: Example

dbms_stats.gather_table_stats
('sh' -- schema
,'customers' -- table
, null -- partition
, 20 -- sample size(%)
, false -- block sample?
,'for all columns' -- column spec
, 4 -- degree of parallelism
,'default' -- granularity
, true); -- cascade to indexes

dbms_stats.set_param('CASCADE',
'DBMS_STATS.AUTO_CASCADE');

dbms_stats.set_param('ESTIMATE_PERCENT','5');
dbms_stats.set_param('DEGREE','NULL');

7-28 Copyright © 2004, Oracle. All rights reserved.

When to Gather Manual Statistics

• Rely mostly on automatics statistics collection
• Change frequency of automatic statistics

collection to meet your needs
• Gather statistics manually:

– For objects that are volatile
– For objects modified in batch operations

7-29 Copyright © 2004, Oracle. All rights reserved.

Statistics Gathering: Manual Approaches

• Dynamic sampling:
BEGIN
DBMS_STATS.DELETE_TABLE_STATS('OE','ORDERS');
DBMS_STATS.LOCK_TABLE_STATS('OE','ORDERS');
END;

BEGIN
DBMS_STATS.GATHER_TABLE_STATS('OE','ORDERS');
DBMS_STATS.LOCK_TABLE_STATS('OE','ORDERS');
END;

• For objects modified in batch operations: gather
statistics as part of the batch operation

• For new objects: gather statistics immediately
after object creation

• Manual statistics collection:

7-30 Copyright © 2004, Oracle. All rights reserved.

Dynamic Sampling

Dynamic sampling is used to automatically collect
statistics when:
• The cost of collecting the statistics is minimal

compared to the execution time
• The query is executed many times

7-31 Copyright © 2004, Oracle. All rights reserved.

Locking Statistics

• Prevents automatic gathering
• Is used primarily for volatile tables

– Lock without statistics implies dynamic sampling.
– Lock with statistics is for representative values.

EXECUTE DBMS_STATS.LOCK_TABLE_STATS
('owner name', 'table name');

EXECUTE DBMS_STATS.LOCK_SCHEMA_STATS
('owner name');

SELECT stattype_locked
FROM dba_tab_statistics;

7-32 Copyright © 2004, Oracle. All rights reserved.

Verifying Table Statistics

SELECT last_analyzed analyzed, sample_size,
monitoring,table_name

FROM dba_tables
WHERE table_name ='EMPLOYEES';

ANALYZED SAMPLE_SIZE MON TABLE_NAME
--------- ----------- --- -------------------
09-FEB-04 2000 YES EMPLOYEES

7-33 Copyright © 2004, Oracle. All rights reserved.

Verifying Column Statistics

SELECT column_name, num_distinct,histogram,
num_buckets, density, last_analyzed analyzed

FROM dba_tab_col_statistics
WHERE table_name ='SALES'
ORDER BY column_name;

COLUMN_NAME NUM_DISTINCT HISTOGRAM NUM_BUCKETS DENSITY ANALYZED

------------- ------------ ----------- ----------- ---------- ---------

AMOUNT_SOLD 3586 NONE 1 .000278862 09-FEB-04

CHANNEL_ID 4 NONE 1 .25 09-FEB-04

CUST_ID 7059 NONE 1 .000141663 09-FEB-04

PROD_ID 72 FREQUENCY 72 5.4416E-07 09-FEB-04

PROMO_ID 4 NONE 1 .25 09-FEB-04

QUANTITY_SOLD 1 NONE 1 1 09-FEB-04

TIME_ID 1460 NONE 1 .000684932 09-FEB-04

7 rows selected.

7-34 Copyright © 2004, Oracle. All rights reserved.

Verifying Index Statistics

SELECT index_name name, num_rows n_r,
last_analyzed l_a, distinct_keys
d_k, leaf_blocks l_b,
avg_leaf_blocks_per_key a_l,
join_index j_I

FROM dba_indexes
WHERE table_name = 'EMPLOYEES'
ORDER BY index_name;

7-36 Copyright © 2004, Oracle. All rights reserved.

History of Optimizer Statistics

GATHER_STATS IMPORT_STATS SET_STATS

DBA_TAB_STATS_HISTORY

New
statistics

Old
statistics

DBA_OPTSTATS_OPERATIONS

31
days

RESTORE_TABLE_STATS

Operation
date

7-37 Copyright © 2004, Oracle. All rights reserved.

Managing Historical Optimizer Statistics

• RESTORE_*_STATS()

• PURGE_STATS()

• ALTER_STATS_HISTORY_RETENTION()

7-39 Copyright © 2004, Oracle. All rights reserved.

Generating System Statistics

• I/O
• CPU

BEGIN
dbms_stats.gather_system_stats(

gathering_mode => 'interval',
interval => 720,
stattab => 'mystats',
statid => 'oltp');

END;
/

7-41 Copyright © 2004, Oracle. All rights reserved.

Statistics on Dictionary Objects

GATHER_FIXED_OBJECTS_STATS

GATHER_DATABASE_STATS

Dictionary tables

Fixed tables

GATHER_DICTIONARY_STATS

7-42 Copyright © 2004, Oracle. All rights reserved.

Dictionary Statistics: Best Practices

GATHER_DATABASE_STATS(OPTIONS=>'GATHER AUTO')

GATHER_SCHEMA_STATS('SYS')
GATHER_DICTIONARY_STATS

GATHER_FIXED_OBJECTS_STATS
CREATE
ALTER
DROP
…

Workload DDLs

7-43 Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Use the Automatic Statistics Gathering

mechanism
• Use the DBMS_STATS package for manual statistics

gathering
• Determine selectivity for predicates with and

without bind variables

7-44 Copyright © 2004, Oracle. All rights reserved.

Practice 7: Overview

This practice covers the following topics:
• Using DBMS_STATS to gather manual statistics
• Verifying the existence of the gather_stats_job
• Understanding the use of histograms
• Understanding bind variable peeking

Copyright © 2004, Oracle. All rights reserved.

Application Tracing

8-2 Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Configure the SQL Trace facility to collect session

statistics
• Enable SQL Trace and locate your trace files
• Format trace files using the TKPROF utility
• Interpret the output of the TKPROF command

8-3 Copyright © 2004, Oracle. All rights reserved.

Overview of Application Tracing

• End to End Application Tracing
– Enterprise Manager
– DBMS_MONITOR

• trcsess utility
• SQL Trace and TKPROF

8-4 Copyright © 2004, Oracle. All rights reserved.

End to End Application Tracing

• Simplifies the process of diagnosing performance
problems in multitier environments

• Can be used to
– Identify high-load SQL
– Monitor what a user's session is doing at the

database level
• Simplifies management of application workloads

by tracking specific modules and actions in a
service

8-5 Copyright © 2004, Oracle. All rights reserved.

End to End Application Tracing Using EM

8-6 Copyright © 2004, Oracle. All rights reserved.

Using DBMS_MONITOR

EXECUTE DBMS_MONITOR.CLIENT_ID_STAT_ENABLE(

client_id => 'OE.OE',

waits => TRUE, binds => FALSE);

EXECUTE DBMS_MONITOR.SERV_MOD_ACT_STAT_ENABLE(

service_name =>'ACCTG',

module_name => 'PAYROLL');

EXECUTE DBMS_MONITOR.SERV_MOD_ACT_STAT_ENABLE(

service_name =>'ACCTG',

module_name => 'GLEDGER',

action_name => 'INSERT ITEM');

1

2

8-8 Copyright © 2004, Oracle. All rights reserved.

Viewing Gathered Statistics for
End to End Application Tracing

• The accumulated statistics for a specified service
can be displayed in the V$SERVICE_STATS view.

• The accumulated statistics for a combination of
specified service, module, and action can be
displayed in the V$SERV_MOD_ACT_STATS view.

• The accumulated statistics for elapsed time of
database calls and for CPU use can be displayed
in the V$SVCMETRIC view.

• All outstanding traces can be displayed in an
Oracle Enterprise Manager report or with the
DBA_ENABLED_TRACES view.

8-9 Copyright © 2004, Oracle. All rights reserved.

trcsess Utility
Client

Dedicated
server

Trace
file

Clients

Shared
server

Trace
file

Shared
server

Trace
file

Shared
server

Trace
file

Client

Dedicated
server

Trace
file

TRCSESS

Trace file
for one clientTKPROF

Report
file

TRCSESS

Trace file
for one service

Client

Dedicated
server

Trace
file

8-10 Copyright © 2004, Oracle. All rights reserved.

trcsess Utility

SQL> select sid||'.'||serial#, username

2 from v$session

3 where username in ('HR', 'SH');

SID||'.'||SERIAL# USERNAME

------------------- --------------------------

236.57 HR

245.49845 SH

$ trcsess session= 236.57 orcl_ora_11155.trc

output=x.txt

8-12 Copyright © 2004, Oracle. All rights reserved.

SQL Trace Facility

• Usually enabled at the session level
• Gathers session statistics for SQL statements

grouped by session
• Produces output that can be formatted by TKPROF

Report
file

Database

Trace
file

TKPROF

Server process

8-13 Copyright © 2004, Oracle. All rights reserved.

Information Captured by SQL Trace

• Parse, execute, and fetch counts
• CPU and elapsed times
• Physical reads and logical reads
• Number of rows processed
• Misses on the library cache
• Username under which each parse occurred
• Each commit and rollback

8-14 Copyright © 2004, Oracle. All rights reserved.

How to Use the SQL Trace Facility

1. Set the initialization parameters.
2. Enable tracing.
3. Run the application.
4. Disable Trace
5. Close the session.
6. Format the trace file.
7. Interpret the output.

Report
file

Database

Trace
file

TKPROF

SQL Trace

8-15 Copyright © 2004, Oracle. All rights reserved.

Initialization Parameters

TIMED_STATISTICS = {false|true}

MAX_DUMP_FILE_SIZE = {n|unlimited}

USER_DUMP_DEST = directory_path

STATISTICS_LEVEL = {BASIC|TYPICAL|ALL}

8-17 Copyright © 2004, Oracle. All rights reserved.

Enabling SQL Trace

• For your current session:

• For any session:

• For an instance, set the following parameter:

SQL> ALTER SESSION SET sql_trace = true;

SQL> EXECUTE dbms_session.set_sql_trace(true);

SQL> EXECUTE dbms_system.set_sql_trace_in_session

2 (session_id, serial_id, true);

SQL_TRACE = TRUE

8-19 Copyright © 2004, Oracle. All rights reserved.

Formatting Your Trace Files

TKPROF command examples:

OS> tkprof

OS> tkprof ora_902.trc run1.txt

OS> tkprof ora_902.trc run2.txt sys=no

sort=execpu print=3

OS> tkprof tracefile outputfile [options]

8-20 Copyright © 2004, Oracle. All rights reserved.

TKPROF Command Options

SORT = option

PRINT = n

EXPLAIN = username/password

INSERT = filename

SYS = NO

AGGREGATE = NO

RECORD = filename

TABLE = schema.tablename

8-22 Copyright © 2004, Oracle. All rights reserved.

Output of the TKPROF Command

• Text of the SQL statement
• Trace statistics (for statement and recursive calls)

separated into three SQL processing steps:

Retrieves the rows returned by a query
(Fetches are performed only for SELECT statements.)

Translates the SQL statement into an execution plan

Executes the statement
(This step modifies the data for INSERT, UPDATE,
and DELETE statements.)

PARSE

EXECUTE

FETCH

8-23 Copyright © 2004, Oracle. All rights reserved.

Output of the TKPROF Command

There are seven categories of trace statistics:

Count

CPU

Elapsed

Disk

Query

Current

Rows

Number of times the procedure was executed

Number of seconds to process

Total number of seconds to execute

Number of physical blocks read

Number of logical buffers read for consistent read

Number of logical buffers read in current mode

Number of rows processed by the fetch or execute

8-25 Copyright © 2004, Oracle. All rights reserved.

Output of the TKPROF Command

The TKPROF output also includes the following:
• Recursive SQL statements
• Library cache misses
• Parsing user ID
• Execution plan
• Optimizer mode or hint
• Row source operation

...
Misses in library cache during parse: 1
Optimizer mode: ALL_ROWS
Parsing user id: 61

Rows Row Source Operation
------- ---

24 TABLE ACCESS BY INDEX ROWID EMPLOYEES (cr=9 pr=0 pw=0 time=129 us)
24 INDEX RANGE SCAN SAL_IDX (cr=3 pr=0 pw=0 time=1554 us)(object id …

8-27 Copyright © 2004, Oracle. All rights reserved.

TKPROF Output with No Index: Example

...
select max(cust_credit_limit)
from customers
where cust_city ='Paris'

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- -------
Parse 1 0.02 0.02 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 2 0.10 0.09 1408 1459 0 1
------- ------ -------- ---------- ---------- ---------- ---------- -------
total 4 0.12 0.11 1408 1459 0 1

Misses in library cache during parse: 1
Optimizer mode: ALL_ROWS
Parsing user id: 61

Rows Row Source Operation
------- ---

1 SORT AGGREGATE (cr=1459 pr=1408 pw=0 time=93463 us)
77 TABLE ACCESS FULL CUSTOMERS (cr=1459 pr=1408 pw=0 time=31483 us)

8-28 Copyright © 2004, Oracle. All rights reserved.

TKPROF Output with Index: Example

...
select max(cust_credit_limit) from customers
where cust_city ='Paris'

call count cpu elapsed disk query current
rows
------- ------ -------- ---------- ---------- ---------- ---------- ---------
Parse 1 0.01 0.00 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 2 0.00 0.00 0 77 0 1
------- ------ -------- ---------- ---------- ---------- ---------- ---------
total 4 0.01 0.00 0 77 0 1

Misses in library cache during parse: 1
Optimizer mode: ALL_ROWS
Parsing user id: 61

Rows Row Source Operation
------- ---

1 SORT AGGREGATE (cr=77 pr=0 pw=0 time=732 us)
77 TABLE ACCESS BY INDEX ROWID CUSTOMERS (cr=77 pr=0 pw=0 time=1760 us)
77 INDEX RANGE SCAN CUST_CUST_CITY_IDX (cr=2 pr=0 pw=0 time=100

us)(object id
55097)

8-29 Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Set SQL Trace initialization parameters

– SQL_TRACE, TIMED_STATISTICS

– USER_DUMP_DEST, MAX_DUMP_FILE_SIZE

• Enable SQL Trace for a session

• Format trace files with TKPROF
• Interpret the output

ALTER SESSION set sql_trace = true

dbms_session.set_sql_trace(…)

dbms_system.set_sql_trace_in_session(…)

8-30 Copyright © 2004, Oracle. All rights reserved.

Practice 8: Overview

This practice covers the following topics:
• Using TKPROF
• Using DBMS_MONITOR

Copyright © 2004, Oracle. All rights reserved.

Identifying High-Load SQL

9-2 Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should understand
the different methods of identifying high-load SQL:
• ADDM
• Top SQL
• Dynamic performance views
• Statspack

9-3 Copyright © 2004, Oracle. All rights reserved.

SQL Tuning Process: Overview

Identify
high-load

SQL

Analyze SQL

Take
corrective

action

9-4 Copyright © 2004, Oracle. All rights reserved.

Identifying High-Load SQL

SQL
workload

High-load
SQL

Automatic
(ADDM)

Manual
(Top SQL)

9-6 Copyright © 2004, Oracle. All rights reserved.

Automatic Database Diagnostic Monitor

Snapshots

ADDM
results

MMON

AWR

ADDM

SGA
In-memory
statistics 60

minutes

ADDM
results

EM

9-7 Copyright © 2004, Oracle. All rights reserved.

ADDM Output

ADDM

ADDM
results

AWREM

Recommendations

Invoke
advisors

Findings
with impact

9-8 Copyright © 2004, Oracle. All rights reserved.

Manual Identification: Top SQL

SQL Tuning
Advisor

SQL
workload

High-load
SQL

Top SQL

9-9 Copyright © 2004, Oracle. All rights reserved.

Spot SQL

9-10 Copyright © 2004, Oracle. All rights reserved.

Period SQL

9-11 Copyright © 2004, Oracle. All rights reserved.

Manual Identification: Statspack

Statspack:
• Collects data about high-load SQL
• Precalculates useful data

– Cache hit ratios
– Transaction statistics

• Uses permanent tables owned by the PERFSTAT
user to store performance statistics

• Separates data collection from report generation
• Uses snapshots to compare performance at

different times

9-12 Copyright © 2004, Oracle. All rights reserved.

Using Dynamic Performance Views

• Select a slow performing period of time to identify
high-load SQL.

• Gather operating system and Oracle statistics
• Identify the SQL statements that use the most

resources.

9-13 Copyright © 2004, Oracle. All rights reserved.

V$SQLAREA View

First thousand characters of the SQL textSQL_TEXT

Sum of the number of sorts that were done for
all the child cursors

SORTS

Total number of executions, totaled over all the
child cursors

EXECUTIONS

Sum of the number of disk reads over all child
cursors

DISK_READS

Elapsed time (in microseconds) used by this
cursor for parsing, executing, and fetching

ELAPSED_TIME

CPU time (in microseconds) used by this
cursor for parsing/executing/fetching

CPU_TIME

DescriptionColumn

9-14 Copyright © 2004, Oracle. All rights reserved.

Querying the V$SQLAREA View

SELECT sql_text, disk_reads , sorts,
cpu_time, elapsed_time

FROM v$sqlarea

WHERE upper(sql_text) like '%PROMOTIONS%'

ORDER BY sql_text;

9-15 Copyright © 2004, Oracle. All rights reserved.

Investigating Full Table Scan Operations

SELECT name, value FROM v$sysstat

WHERE name LIKE '%table scan%';

NAME VALUE
--- --------

table scans (short tables) 217842

table scans (long tables) 3040

table scans (rowid ranges) 254

table scans (cache partitions) 7

table scans (direct read) 213

table scan rows gotten 40068909

table scan blocks gotten 1128681

9-16 Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned about the
different methods of identifying high-load SQL:
• ADDM
• Top SQL
• Statspack
• Dynamic performance views

Copyright © 2004, Oracle. All rights reserved.

Automatic SQL Tuning

10-2 Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Describe automatic SQL tuning
• Describe the Automatic Workload Repository
• Use Automatic Database Diagnostic Monitor
• View the cursor cache
• Perform automatic SQL tuning
• Use the SQL Tuning Advisor
• Use the SQL Access Advisor

10-3 Copyright © 2004, Oracle. All rights reserved.

SQL Tuning Process: Overview

Identify
high-load

SQL

Analyze
SQL

Take
corrective

action

10-4 Copyright © 2004, Oracle. All rights reserved.

Automatic SQL Tuning

DBA

How can I tune
high-load SQL?

High-load
SQL

ADDM

SQL
workload

10-5 Copyright © 2004, Oracle. All rights reserved.

Automatic Tuning Optimizer

• Is the query optimizer running in tuning mode
• Performs verification steps
• Performs exploratory steps

10-7 Copyright © 2004, Oracle. All rights reserved.

SQL Tuning Advisor

SQL Tuning
Advisor

SQL
workload

High-load
SQL

ADDM

10-8 Copyright © 2004, Oracle. All rights reserved.

SQL Tuning Advisor Analysis

Add missing index
Run Access Advisor

Restructure SQL

Perform SQL profiling

Detect stale or missing
statistics

Comprehensive
SQL tuning

SQL Tuning
Advisor

Automatic
Tuning Optimizer

SQL structure
analysis

Access path
analysis

SQL profiling

Statistics
analysis

10-9 Copyright © 2004, Oracle. All rights reserved.

Statistics Analysis

Automatic
Statistics Gathering

disabled
SQL Tuning

Advisor
Stale or missing

statistics

DBMS_STATS.GATHER_TABLE_STATS(
ownname=>'SH', tabname=>'CUSTOMERS',

estimate_percent=>
DBMS_STATS.AUTO_SAMPLE_SIZE);

10-10 Copyright © 2004, Oracle. All rights reserved.

SQL Profiling

Optimizer
(Tuning mode)

CreateSubmit

Output

SQL ProfileSQL Tuning
Advisor

Database
users

Well-tuned plan

Optimizer
(Normal mode)

No application
code change

Use

10-12 Copyright © 2004, Oracle. All rights reserved.

SQL Access Path Analysis

Indexes

SQL statements

SQL Tuning
Advisor

Significant
performance gain

10-13 Copyright © 2004, Oracle. All rights reserved.

SQL Structure Analysis

Poorly written
SQL statement

SQL Tuning
Advisor

Restructured
SQL statement

Design mistakes

Type mismatch
and indexes

SQL constructs

How can I
rewrite it?

10-14 Copyright © 2004, Oracle. All rights reserved.

SQL Tuning Advisor: Usage Model

SQL
Tuning
Advisor

ADDM

Cursor cache

STS

Custom

Filter/rank

Sources Manual selection

Automatic selection

AWR

AWR

High-load SQL

DBA

10-16 Copyright © 2004, Oracle. All rights reserved.

SQL Tuning Set

Cursor cache

STS

Custom

Filter/rank

Sources Manual selection

SQL
Tuning
Advisor

AWR

DBA

10-19 Copyright © 2004, Oracle. All rights reserved.

SQL Tuning Views

• Advisor information views:
– DBA_ADVISOR_TASKS

– DBA_ADVISOR_FINDINGS

– DBA_ADVISOR_RECOMMENDATIONS

– DBA_ADVISOR_RATIONALE

• SQL tuning information views:
– DBA_SQLTUNE_STATISTICS

– DBA_SQLTUNE_BINDS

– DBA_SQLTUNE_PLANS

• SQL Tuning Set views:
– DBA_SQLSET, DBA_SQLSET_BINDS
– DBA_SQLSET_STATEMENTS

– DBA_SQLSET_REFERENCES

• SQL Profile view: DBA_SQL_PROFILES

10-20 Copyright © 2004, Oracle. All rights reserved.

Enterprise Manager: Usage Model

Launch SQL Tuning Advisor

View recommendations

Implement recommendations

ADDM report page SQL Tuning Set pageTop SQL page

10-21 Copyright © 2004, Oracle. All rights reserved.

SQL Access Advisor

SQL Access
Advisor

Select …

Select …

Select …

…

Create index …
Drop index…
Create materialized view …

SQL workload Recommendations

10-23 Copyright © 2004, Oracle. All rights reserved.

SQL Access Advisor: Features

Using the SQL Access Advisor Wizard or API, you can
do the following:
• Recommend creation or removal of materialized

views and indexes
• Manage workloads
• Mark, update, and remove recommendations

10-24 Copyright © 2004, Oracle. All rights reserved.

SQL Access Advisor: Usage Model

User-defined

Hypothetical

Cursor cache

Filter options
STS

SQL Access
Advisor

Workload

10-25 Copyright © 2004, Oracle. All rights reserved.

SQL Access Advisor: User Interface

10-26 Copyright © 2004, Oracle. All rights reserved.

SQL Tuning Advisor and
SQL Access Advisor

SQL Access AdvisorAccess Path: Materialized View Logs

SQL Access AdvisorAccess Path: Materialized Views

SQL Tuning/Access
AdvisorAccess Path: Indexes

SQL Tuning AdvisorSQL Structure

SQL Tuning AdvisorSQL Profile

SQL Tuning AdvisorStatistics

AdvisorAnalysis Types

10-27 Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Describe the Automatic Workload Repository
• Use Automatic Database Diagnostic Monitor
• View the cursor cache
• Perform automatic SQL tuning
• Use the SQL Tuning Advisor
• Use the SQL Access Advisor

Copyright © 2004, Oracle. All rights reserved.

Index Usage

11-2 Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Identify index types
• Identify basic access methods
• Monitor index usage

11-3 Copyright © 2004, Oracle. All rights reserved.

Indexing Guidelines

• You should create indexes only as needed.
• Creating an index to tune a specific statement

could affect other statements.
• It is best to drop unused indexes.
• EXPLAIN PLAN can be used to determine if an

index is being used by the optimizer.

11-4 Copyright © 2004, Oracle. All rights reserved.

Types of Indexes

• Unique and nonunique indexes
• Composite indexes
• Index storage techniques:

– B*-tree
Normal
Reverse key
Descending
Function based

– Bitmap
– Domain indexes
– Key compression

11-6 Copyright © 2004, Oracle. All rights reserved.

When to Index

Columns used only with
functions or expressions
unless creating function-based
indexes

High-selectivity keys

Columns based only on query
performance

Foreign keys

Frequently updated columnsKeys used to join tables

Keys and expressions with few
distinct values except bitmap
indexes in data warehousing

Keys frequently used in
search or query
expressions

Do Not IndexIndex

11-8 Copyright © 2004, Oracle. All rights reserved.

Effect of DML Operations on Indexes

• Inserts result in the insertion of an index entry in
the appropriate block. (Block splits might occur.)

• Delete rows result in a deletion of the index entry.
(Empty blocks become available.)

• Updates to the key columns result in a logical
delete and an insert to the index.

11-9 Copyright © 2004, Oracle. All rights reserved.

Indexes and Constraints

The Oracle Server implicitly creates or uses B*-tree
indexes when you define the following:
• Primary key constraints
• Unique key constraints

CREATE TABLE new_channels
(channel_id CHAR(1)
CONSTRAINT channels_channel_id_pk PRIMARY KEY
, channel_desc VARCHAR2(20)
CONSTRAINT channels_channel_desc_nn NOT NULL
, channel_class VARCHAR2(20)
, channel_total VARCHAR2(13)

);

11-10 Copyright © 2004, Oracle. All rights reserved.

Indexes and Foreign Keys

• Indexes are not created automatically.
• There are locking implications to DML activity on

parent-child tables.

CUSTOMERS
cust_id

SALES PRODUCTS
#prod_id

CHANNELS
#channel_id

11-11 Copyright © 2004, Oracle. All rights reserved.

Basic Access Methods

• Full table scans:
– Can use multiblock I/O
– Can be parallelized

• Index scans:
– Allow index access only
– Are followed by access by ROWID

• Fast-full index scans:
– Can use multiblock I/O
– Can be parallelized

11-12 Copyright © 2004, Oracle. All rights reserved.

Identifying Unused Indexes

• The Oracle Database provides the capability to
gather statistics about the usage of an index.

• Benefits include:
– Space conservation
– Improved performance by eliminating unnecessary

overhead during DML operations

11-13 Copyright © 2004, Oracle. All rights reserved.

Enabling and Disabling the Monitoring of
Index Usage

• To start monitoring the usage of an index:

• To stop monitoring the usage of an index:

• V$OBJECT_USAGE contains information about the
usage of an index.

ALTER INDEX customers_pk MONITORING USAGE;

ALTER INDEX customers_pk NOMONITORING USAGE;

11-14 Copyright © 2004, Oracle. All rights reserved.

Index Tuning Using
the SQL Access Advisor

The SQL Access Advisor:
• Determines which indexes are required
• Recommends a set of indexes
• Is invoked from

– Advisor Central in Oracle Enterprise Manager
– Run through the DBMS_ADVISOR package APIs

• Uses a workload such as:
– Current contents of the SQL cache
– A user-defined set of SQL statements
– A SQL Tuning Set
– Hypothetical workload

• Generates a set of recommendations
• Provides an implementation script

11-15 Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned about the
following:
• Indexes

– Index types
– DML operations and indexes
– Indexes and constraints

• Monitoring indexes
– Index usage monitoring

Copyright © 2004, Oracle. All rights reserved.

Using Different Indexes

12-2 Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Use composite indexes
• Use bitmap indexes
• Use bitmap join indexes
• Identify bitmap index operations
• Create function-based indexes
• Use index-organized tables

12-3 Copyright © 2004, Oracle. All rights reserved.

Composite Indexes

Here are some features of the index displayed below.
• Combinations of columns that are leading

portions of the index:
– cust_last_name
– cust_last_name cust_first_name

– cust_last_name cust_first_name cust_gender

• Combinations of columns that are not leading
portions of the index:
– cust_first_name cust_gender
– cust_first_name
– cust_gender

CREATE INDEX cust_last_first_gender_idx
ON customers (cust_last_name,

cust_first_name, cust_gender);

12-4 Copyright © 2004, Oracle. All rights reserved.

Composite Index Guidelines

• Create a composite index on keys that are used
together frequently in WHERE clauses.

• Create the index so that the keys used in WHERE
clauses make up a leading portion.

• Put the most frequently queried column in the
leading part of the index.

• Put the most restrictive column in the leading part
of the index.

12-5 Copyright © 2004, Oracle. All rights reserved.

Skip Scanning of Indexes

• Index skip scanning enables access through a
composite index when the prefix column is not
part of the predicate.

• Skip scanning is supported by:
– Cluster indexes
– Descending scans
– CONNECT BY clauses

• Skip scanning is not supported by reverse key or
bitmap indexes.

12-6 Copyright © 2004, Oracle. All rights reserved.

Bitmap Index

• Compared with regular B*-tree indexes, bitmap
indexes are faster and use less space for
low-cardinality columns.

• Each bitmap index comprises storage pieces called
bitmaps.

• Each bitmap contains information about a
particular value for each of the indexed columns.

• Bitmaps are compressed and stored in a B*-tree
structure.

12-7 Copyright © 2004, Oracle. All rights reserved.

When to Use Bitmap Indexes

Use bitmap indexes for:
• Columns with low cardinality
• Columns that are frequently used in:

– Complex WHERE clause conditions
– Group functions (such as COUNT and SUM)

• Very large tables
• DSS systems with many ad hoc queries and few

concurrent DML changes

12-8 Copyright © 2004, Oracle. All rights reserved.

Advantages of Bitmap Indexes

When used appropriately, bitmap indexes provide:
• Reduced response time for many ad hoc queries
• Substantial reduction of space usage compared to

other indexing techniques
• Dramatic performance gains

12-9 Copyright © 2004, Oracle. All rights reserved.

Bitmap Index Guidelines

• Reduce bitmap storage by:
– Declaring columns NOT NULL when possible
– Using fixed-length data types when feasible
– Using the command:

ALTER TABLE … MINIMIZE RECORDS_PER_BLOCK

• Improve bitmap performance by increasing the
value of PGA_AGGREGATE_TARGET.

12-10 Copyright © 2004, Oracle. All rights reserved.

Bitmap Join Index

Sales

Customers

CREATE BITMAP INDEX cust_sales_bji

ON sales(c.cust_city)

FROM sales s, customers c

WHERE c.cust_id = s.cust_id;

12-11 Copyright © 2004, Oracle. All rights reserved.

Bitmap Join Index

• No join with the CUSTOMERS table is needed.
• Only the index and the SALES table are used to

evaluate the following query:

54

SELECT SUM(s.amount_sold)
FROM sales s, customers c
WHERE s.cust_id =

c.cust_id
AND c.cust_city = 'Sully';

12-12 Copyright © 2004, Oracle. All rights reserved.

Bitmap Join Index:
Advantages and Disadvantages

• Advantages
– Good performance for join queries; space-efficient
– Especially useful for large-dimension tables in star

schemas
• Disadvantages

– More indexes are required: Up to one index per
dimension-table column rather than one index per
dimension table is required.

– Maintenance costs are higher: Building or
refreshing a bitmap join index requires a join.

12-14 Copyright © 2004, Oracle. All rights reserved.

Function-Based Index

CREATE INDEX FBI_UPPER_LASTNAME
ON CUSTOMERS(upper(cust_last_name));

SELECT *
FROM customers
WHERE UPPER(cust_last_name) = 'SMITH';

ALTER SESSION
SET QUERY_REWRITE_ENABLED = TRUE;

12-15 Copyright © 2004, Oracle. All rights reserved.

Function-Based Indexes: Usage

Function-based indexes:
• Materialize computational-intensive expressions
• Facilitate non-case-sensitive searches
• Provide a simple form of data compression
• Can be used for an NLS sort index

12-16 Copyright © 2004, Oracle. All rights reserved.

Indexed
access on table

ROWID

Index-Organized Tables: Overview

Accessing
index-organized table

Row header

Non-key columns

Key column

12-17 Copyright © 2004, Oracle. All rights reserved.

Index-Organized Tables: Characteristics

Index-organized tables:
• Must have a primary key
• Cannot contain LONG columns
• Can be rebuilt
• Can be accessed by either primary key or leading

columns

12-18 Copyright © 2004, Oracle. All rights reserved.

Advantages and Disadvantages of IOTs

• Advantages
– IOTs provide fast key-based access for queries

involving exact match and range searches.
– DML causes only updates to index structure.
– Storage requirements are reduced.
– IOTs are useful in:

Applications that retrieve data based on a primary
key
Applications that involve content-based
information

• Disadvantages
– Not suitable for queries that do not use the primary

key in a predicate

12-19 Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned about:
• Composite indexes
• Bitmap indexes
• Bitmap join indexes
• Function-based indexes
• Index-organized tables

Copyright © 2004, Oracle. All rights reserved.

Optimizer Hints

13-2 Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to
specify hints for:
• Optimizer mode
• Query transformation
• Access path
• Join orders
• Join methods

13-3 Copyright © 2004, Oracle. All rights reserved.

Optimizer Hints: Overview

Optimizer hints:
• Are used to alter execution plans
• Influence optimizer decisions
• Provide a mechanism to instruct the optimizer to

choose a certain query execution plan

13-4 Copyright © 2004, Oracle. All rights reserved.

Types of Hints

Apply to the entire SQL statementStatement hints

Operate on a single query blockQuery block hints

Specify more than one table or
viewMultitable hints

Specified on one table or viewSingle-table hints

13-5 Copyright © 2004, Oracle. All rights reserved.

Specifying Hints

hint

comment
text

//+

hint

comment
text

--+
SELECT

INSERT

DELETE

UPDATE

MERGE

SELECT

INSERT

DELETE

UPDATE

MERGE

13-6 Copyright © 2004, Oracle. All rights reserved.

Rules for Hints

• Place hints immediately after the first SQL
keyword of a statement block.

• Each statement block can have only one hint
comment, but it can contain multiple hints.

• Hints apply to only the statement block in which
they appear.

• If a statement uses aliases, hints must reference
aliases rather than table names.

13-7 Copyright © 2004, Oracle. All rights reserved.

Hint Recommendations

• Use hints carefully because they imply a high
maintenance load.

• Be aware of the performance impact of hard-coded
hints when they become less valid.

13-8 Copyright © 2004, Oracle. All rights reserved.

Optimizer Hint Syntax: Example

UPDATE /*+ INDEX(p PRODUCTS_PROD_CAT_IX)*/
products p
SET p.prod_min_price =

(SELECT
(pr.prod_list_price*.95)
FROM products pr
WHERE p.prod_id = pr.prod_id)

WHERE p.prod_category = 'Men'
AND p.prod_status = 'available, on stock'
/

13-9 Copyright © 2004, Oracle. All rights reserved.

Hint Categories

There are hints for:
• Optimization approaches and goals
• Access paths
• Query transformations
• Join orders
• Join operation
• Parallel execution

13-10 Copyright © 2004, Oracle. All rights reserved.

Optimization Goals and Approaches

Instructs Oracle Server to optimize
an individual SQL statement for fast
response

FIRST_ROWS(n)

Chooses cost-based approach with
a goal of best throughput

ALL_ROWS

13-11 Copyright © 2004, Oracle. All rights reserved.

Hints for Access Paths

Performs a full table scanFULL

Explicitly chooses a bitmap access
path

INDEX_COMBINE

Scans an index in ascending orderINDEX_ASC

Scans an index in ascending orderINDEX

Accesses a table by ROWIDROWID

13-13 Copyright © 2004, Oracle. All rights reserved.

Hints for Access Paths

Instructs the optimizer to use an index
join as an access path

INDEX_JOIN

Merges single-column indexesAND_EQUAL

Disallows using a set of indexesNO_INDEX

Performs a fast-full index scanINDEX_FFS

Chooses an index scan for the
specified table

INDEX_DESC

13-15 Copyright © 2004, Oracle. All rights reserved.

INDEX_COMBINE Hint: Example

SELECT --+INDEX_COMBINE(CUSTOMERS)
cust_last_name

FROM SH.CUSTOMERS
WHERE (CUST_GENDER= 'F' AND
CUST_MARITAL_STATUS = 'single')
OR CUST_YEAR_OF_BIRTH BETWEEN '1917'
AND '1920';

13-16 Copyright © 2004, Oracle. All rights reserved.

INDEX_COMBINE Hint: Example

Execution Plan

0 SELECT STATEMENT Optimizer=CHOOSE (Cost=491

Card=10481
Bytes =167696)

1 0 TABLE ACCESS (BY INDEX ROWID) OF 'CUSTOMERS'
(Cost=491 …)

2 1 BITMAP CONVERSION (TO ROWIDS)
3 2 BITMAP OR
4 3 BITMAP AND
5 4 BITMAP INDEX (SINGLE VALUE) OF

'CUST_MARITAL_BIX'
6 4 BITMAP INDEX (SINGLE VALUE) OF

'CUST_GENDER_BIX'
7 3 BITMAP MERGE
8 7 BITMAP INDEX (RANGE SCAN) OF

'CUST_YOB_BIX'

13-17 Copyright © 2004, Oracle. All rights reserved.

Hints for Query Transformation

Rewrites OR into UNION ALL and
disables INLIST processing

USE_CONCAT

Prevents OR expansionsNO_EXPAND

13-18 Copyright © 2004, Oracle. All rights reserved.

Hints for Query Transformation

Merges a view for each queryMERGE

Indicates that the hinted table should
not be considered as a fact table

NO_FACT

Indicates that the hinted table should
be considered as a fact table

FACT

Makes the optimizer use the best
plan in which the transformation can
be used

STAR_
TRANSFORMATION

Prevents merging of mergeable viewsNO_MERGE

13-20 Copyright © 2004, Oracle. All rights reserved.

Hints for Join Orders

Uses the specified table as the first
table in the join order

LEADING

Causes the Oracle Server to join
tables in the order in which they
appear in the FROM clause

ORDERED

13-22 Copyright © 2004, Oracle. All rights reserved.

Hints for Join Operations

Joins the specified table
using a hash join

USE_HASH

Does not perform sort-merge
operations for the join

NO_USE_MERGE

Joins the specified table
using a nested loop join

USE_NL

Does not use hash joinNO_USE_HASH

Joins the specified table
using a sort-merge join

USE_MERGE

Does not use nested loops to
perform the join

NO_USE_NL

13-24 Copyright © 2004, Oracle. All rights reserved.

Other Hints

Controls dynamic sampling to
improve server performance

DYNAMIC_SAMPLING

Enables direct-path INSERTAPPEND

Prevents replacing literals with
bind variables

CURSOR_SHARING_EXACT

Forces the optimizer to
preserve the order of predicate
evaluation

ORDERED_PREDICATES

Enable regular INSERTNOAPPEND

13-26 Copyright © 2004, Oracle. All rights reserved.

Hints for Suppressing Index Usage

Forces the optimizer to use a
specific index or a set of listed
indexes

INDEX or
INDEX_COMBINE

Forces a full table scanFULL

Disallows use of any indexesNO_INDEX

DescriptionHint

13-27 Copyright © 2004, Oracle. All rights reserved.

Hints and Views

• Do not use hints in views.
• Use view-optimization techniques:

– Statement transformation
– Results accessed like a table

• Hints can be used on mergeable views and
nonmergeable views.

13-29 Copyright © 2004, Oracle. All rights reserved.

Hints for View Processing

Does not merge mergeable viewsNO_MERGE

Merges complex views or subqueries
with the surrounding query

MERGE

13-30 Copyright © 2004, Oracle. All rights reserved.

Global and Local Hints

• Extended hint syntax enables the specifying of (global)
hints through views

• References a table name in the hint with a dot notation

CREATE view city_view AS
SELECT *
FROM customers c
WHERE cust_city like 'S%';

SELECT /*+ index(v.c cust_credit_limit_idx) */
v.cust_last_name, v.cust_credit_limit

FROM city_view v
WHERE cust_credit_limit > 5000;

13-31 Copyright © 2004, Oracle. All rights reserved.

Specifying a Query Block in a Hint

Explain plan for
SELECT employee_id, last_name
FROM hr.employees e
WHERE last_name = 'Smith';

SELECT PLAN_TABLE_OUTPUT
FROM TABLE(DBMS_XPLAN.DISPLAY(NULL, NULL,

'ALL'));

SELECT /*+ QB_NAME(qb) FULL(@qb e) */
employee_id, last_name

FROM hr.employees e
WHERE employee_id = 100;

1

2

13-33 Copyright © 2004, Oracle. All rights reserved.

Specifying a Full Set of Hints

SELECT /*+ LEADING(e2 e1) USE_NL(e1) INDEX(e1
emp_emp_id_pk) USE_MERGE(j) FULL(j) */

e1.first_name, e1.last_name, j.job_id,
sum(e2.salary) total_sal

FROM hr.employees e1, hr.employees e2,
hr.job_history j

WHERE e1.employee_id = e2.manager_id

AND e1.employee_id = j.employee_id

AND e1.hire_date = j.start_date

GROUP BY e1.first_name, e1.last_name, j.job_id

ORDER BY total_sal;

13-34 Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Set the optimizer mode
• Use optimizer hint syntax
• Determine access-path hints
• Analyze hints and their impact on views

Copyright © 2004, Oracle. All rights reserved.

Materialized Views

14-2 Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Identify the characteristics and benefits of

materialized views
• Use materialized views to enable query rewrites
• Verify the properties of materialized views
• Perform refreshes on materialized views

14-3 Copyright © 2004, Oracle. All rights reserved.

Materialized Views

A materialized view:
• Is a precomputed set of results
• Has its own data segment and offers:

– Space management options
– Use of its own indexes

• Is useful for:
– Expensive and complex joins
– Summary and aggregate data

14-4 Copyright © 2004, Oracle. All rights reserved.

If Materialized Views Are Not Used

SELECT c.cust_id, SUM(amount_sold)
FROM sales s, customers c
WHERE s.cust_id = c.cust_id
GROUP BY c.cust_id;

CREATE TABLE cust_sales_sum AS
SELECT c.cust_id, SUM(amount_sold) AS amount
FROM sales s, customers c
WHERE s.cust_id = c.cust_id
GROUP BY c.cust_id;

SELECT * FROM cust_sales_sum;

14-5 Copyright © 2004, Oracle. All rights reserved.

Benefits of Using Materialized Views

CREATE MATERIALIZED VIEW cust_sales_mv
ENABLE QUERY REWRITE AS
SELECT c.cust_id, SUM(amount_sold) AS amount
FROM sales s, customers c
WHERE s.cust_id = c.cust_id
GROUP BY c.cust_id;

SELECT c.cust_id, SUM(amount_sold)
FROM sales s, customers c
WHERE s.cust_id = c.cust_id
GROUP BY c.cust_id;

Execution Plan
--
0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=6 …)

1 0 MAT_VIEW REWRITE ACCESS (FULL) OF 'CUST_SALES_MV' (MAT_VIEW
REWRITE) (Cost=6 …)

14-6 Copyright © 2004, Oracle. All rights reserved.

How Many Materialized Views?

• One materialized view for multiple queries:
– One materialized view can be used to satisfy

multiple queries
– Less disk space is needed
– Less time is needed for maintenance

• Query rewrite chooses the materialized view to
use.

• One materialized view per query:
– Is not recommended because it consumes too

much disk space
– Improves one query's performance

14-7 Copyright © 2004, Oracle. All rights reserved.

Creating Materialized Views:
Syntax Options

CREATE MATERIALIZED VIEW mview_name
[TABLESPACE ts_name]
[PARALLEL (DEGREE n)]
[BUILD {IMMEDIATE|DEFERRED}]
[{ REFRESH {FAST|COMPLETE|FORCE}
[{ON COMMIT|ON DEMAND}]
| NEVER REFRESH }]

[{ENABLE|DISABLE} QUERY REWRITE]

AS SELECT … FROM …

14-8 Copyright © 2004, Oracle. All rights reserved.

Creating Materialized Views: Example

CREATE MATERIALIZED VIEW cost_per_year_mv
ENABLE QUERY REWRITE
AS
SELECT t.week_ending_day
, t.calendar_year
, p.prod_subcategory
, sum(c.unit_cost) AS dollars
FROM costs c
, times t
, products p
WHERE c.time_id = t.time_id
AND c.prod_id = p.prod_id
GROUP BY t.week_ending_day
, t.calendar_year
, p.prod_subcategory;

Materialized view created.

14-9 Copyright © 2004, Oracle. All rights reserved.

Types of Materialized Views

• Materialized views with aggregates

• Materialized views containing only joins

CREATE MATERIALIZED VIEW cust_sales_mv AS
SELECT c.cust_id, s.channel_id,

SUM(amount_sold) AS amount
FROM sales s, customers c
WHERE s.cust_id = c.cust_id
GROUP BY c.cust_id, s.channel_id;

CREATE MATERIALIZED VIEW sales_products_mv AS
SELECT s.time_id, p.prod_name
FROM sales s, products p
WHERE s.prod_id = p.prod_id;

14-10 Copyright © 2004, Oracle. All rights reserved.

Refresh Methods

• You can specify how you want your materialized
views to be refreshed from the detail tables by
selecting one of four options:
– COMPLETE

– FAST

– FORCE

– NEVER

• You can view the REFRESH_METHOD in the
ALL_MVIEWS data dictionary view.

14-12 Copyright © 2004, Oracle. All rights reserved.

Refresh Modes

• Manual refresh
– Specify ON DEMAND option
– By using the DBMS_MVIEW package

• Automatic refresh Synchronous
– Specify ON COMMIT option
– Upon commit of changes to the underlying tables

but independent of the committing transaction
• Automatic refresh Asynchronous

– Specify using START WITH and NEXT clauses
– Defines a refresh interval for the materialized view

• REFRESH_MODE in ALL_MVIEWS

14-14 Copyright © 2004, Oracle. All rights reserved.

Manual Refresh with DBMS_MVIEW

• For ON DEMAND refresh only
• Three procedures with the DBMS_MVIEW package:

– REFRESH

– REFRESH_ALL_MVIEWS

– REFRESH_DEPENDENT

14-15 Copyright © 2004, Oracle. All rights reserved.

Materialized Views: Manual Refresh

Specific materialized views:
Exec DBMS_MVIEW.REFRESH('cust_sales_mv');

VARIABLE fail NUMBER;

exec DBMS_MVIEW.REFRESH_ALL_MVIEWS(:fail);

VARIABLE fail NUMBER;

exec DBMS_MVIEW.REFRESH_DEPENDENT(-

:fail,'CUSTOMERS,SALES');

Materialized views based on one or more tables:

All materialized views due for refresh:

14-16 Copyright © 2004, Oracle. All rights reserved.

Query Rewrites

• If you want to use a materialized view instead of
the base tables, a query must be rewritten.

• Query rewrites are transparent to applications.
• Query rewrites do not require special privileges on

the materialized view.
• A materialized view can be enabled or disabled for

query rewrites.

14-17 Copyright © 2004, Oracle. All rights reserved.

Query Rewrites

• Use EXPLAIN PLAN or AUTOTRACE to verify that
query rewrites occur.

• Check the query response:
– Fewer blocks are accessed.
– Response time should be significantly better.

14-18 Copyright © 2004, Oracle. All rights reserved.

Enabling and Controlling
Query Rewrites

• Query rewrites are available with cost-based
optimization only.

• The following optimizer hints influence query
rewrites:
– REWRITE

– NOREWRITE
– REWRITE_OR_ERROR

QUERY_REWRITE_ENABLED = {true|false|force}

QUERY_REWRITE_INTEGRITY =
{enforced|trusted|stale_tolerated}

14-20 Copyright © 2004, Oracle. All rights reserved.

Query Rewrite: Example

EXPLAIN PLAN FOR
SELECT t.week_ending_day
, t.calendar_year
, p.prod_subcategory
, sum(c.unit_cost) AS dollars
FROM costs c
, times t
, products p
WHERE c.time_id = t.time_id

...

Execution Plan

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost…)
1 0 MAT_VIEW REWRITE ACCESS (FULL) OF 'costs_per_year_mv' (

MAT_VIEW REWRITE) (Cost…)

14-21 Copyright © 2004, Oracle. All rights reserved.

Query Rewrite: Example
SELECT t.week_ending_day
, t.calendar_year
, p.prod_subcategory
, sum(c.unit_cost) AS dollars
FROM costs c, times t, products p
WHERE c.time_id = t.time_id
AND c.prod_id = p.prod_id
AND t.calendar_year = '1999'
GROUP BY t.week_ending_day, t.calendar_year
, p.prod_subcategory
HAVING sum(c.unit_cost) > 10000;

SELECT week_ending_day
, prod_subcategory
, dollars
FROM cost_per_year_mv
WHERE calendar_year = '1999'
AND dollars > 10000;

14-22 Copyright © 2004, Oracle. All rights reserved.

Verifying Query Rewrite

CREATE MATERIALIZED VIEW cust_orders_mv
ENABLE QUERY REWRITE AS
SELECT c.customer_id, SUM(order_total) AS amt
FROM oe.orders s, oe.customers c
WHERE s.customer_id = c.customer_id
GROUP BY c.customer_id;

SELECT /*+ REWRITE_OR_ERROR */ c.customer_id,
SUM(order_total)AS amt
FROM oe.orders s, oe.customers c
WHERE s.customer_id = c.customer_id
GROUP BY c.customer_id;

ORA-30393: a query block in the statement did
not rewrite

14-23 Copyright © 2004, Oracle. All rights reserved.

SQL Access Advisor

• Recommends creating the appropriate:
– Materialized views
– Materialized view logs
– Indexes

• Provides recommendations to optimize for :
– Fast refresh
– Query rewrite

• Can be run:
– From Oracle Enterprise Manager by using the SQL

Access Advisor Wizard
– By invoking the DBMS_ADVISOR package

For a given workload, the SQL Access Advisor:

14-24 Copyright © 2004, Oracle. All rights reserved.

Using the DBMS_MVIEW Package

DBMS_MVIEW methods
• EXPLAIN_MVIEW

• EXPLAIN_REWRITE

• TUNE_MVIEW

14-25 Copyright © 2004, Oracle. All rights reserved.

Tuning Materialized Views for
Fast Refresh and Query Rewrite

DBMS_ADVISOR.TUNE_MVIEW (
task_name IN OUT VARCHAR2,
mv_create_stmt IN [CLOB | VARCHAR2]

);

14-26 Copyright © 2004, Oracle. All rights reserved.

Results of Tune_MVIEW

• IMPLEMENTATION recommendations
– CREATE MATERIALIZED VIEW LOG statements
– ALTER MATERIALIZED VIEW LOG FORCE

statements
– One or more CREATE MATERIALIZED VIEW

statements
• UNDO recommendations

– DROP MATERIALIZED VIEW statements

14-28 Copyright © 2004, Oracle. All rights reserved.

DBMS_MVIEW.EXPLAIN_MVIEW Procedure

• Accepts:
– Materialized view name
– SQL statement

• Advises what is and what is not possible:
– For an existing materialized view
– For a potential materialized view before you create it

• Stores results in MV_CAPABILITIES_TABLE
(relational table) or in a VARRAY

• utlxmv.sql must be executed as the current user
to create MV_CAPABILITIES_TABLE.

14-29 Copyright © 2004, Oracle. All rights reserved.

Explain Materialized View: Example

EXEC dbms_mview.explain_mview (
'cust_sales_mv', '123');

SELECT capability_name, possible, related_text,msgtxt
FROM mv_capabilities_table
WHERE statement_id = '123' ORDER BY seq;

CAPABILITY_NAME P RELATED_TE MSGTXT
------------------ - ---------- --------------------
...
REFRESH_COMPLETE Y
REFRESH_FAST N
REWRITE N
PCT_TABLE N SALES no partition key or

PMARKER in select
list

PCT_TABLE N CUSTOMERS relation is not a
partitioned
table

...

14-30 Copyright © 2004, Oracle. All rights reserved.

Designing for Query Rewrite

Query rewrite considerations:
• Constraints
• Outer joins
• Text match
• Aggregates
• Grouping conditions
• Expression matching
• Date folding
• Statistics

14-32 Copyright © 2004, Oracle. All rights reserved.

Materialized View Hints

Forces an error if a query rewrite is not
possible

REWRITE_OR_ERROR

Disables query rewrite for the query
block

NO_REWRITE

Rewrites a query in terms of
materialized views

REWRITE

14-33 Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Create materialized views
• Enable query rewrites using materialized views

Copyright © 2004, Oracle. All rights reserved.

Data Warehouse Tuning Considerations

D-2 Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should understand
the following:
• Star transformations
• Basics of parallel execution
• Types of parallelism
• Parallel query
• Parallelizing SQL statements
• Viewing parallel queries with EXPLAIN PLAN

D-3 Copyright © 2004, Oracle. All rights reserved.

Star Transformation

With the star transformation, you can:
• Execute star queries efficiently, especially in the

following cases:
– Number of dimension tables is large.
– Fact table is sparse.
– Not all dimensions have constraining predicates.

• Set the STAR_TRANSFORMATION_ENABLED
initialization parameter

• Use the STAR_TRANSFORMATION hint

D-4 Copyright © 2004, Oracle. All rights reserved.

Star Transformation: Example

SELECT s.amount_sold, p.prod_name
, ch.channel_desc
FROM sales s, products p

, channels ch, customers c
WHERE s.prod_id= p.prod_id
AND s.channel_id = ch.channel_id
AND s.cust_id = c.cust_id
AND ch.channel_id in ('I','P','S')
AND c.cust_city = 'Asten'
AND p.prod_id > 40000;

D-5 Copyright © 2004, Oracle. All rights reserved.

Steps in Execution

1. Use a bitmap index to identify row sets for sales in
channels I, P, or S. Combine these with a bitmap
OR operation.

2. Use a bitmap for rows corresponding to sales in
the city of Asten.

3. Use a bitmap for rows with product ID greater than
40,000.

4. Combine these three bitmaps into a single bitmap
with the bitmap AND operation.

5. Use this final bitmap to access rows that satisfy all
the conditions from the fact table.

6. Join these rows from the fact table to the
dimension tables.

The Oracle Server processes the query by carrying out
the following steps:

D-7 Copyright © 2004, Oracle. All rights reserved.

Introduction to Parallel Execution

Parallel execution improves processing for:
• Queries requiring large table scans, joins, or

partitioned index scans
• Creation of large indexes
• Creation of large tables
• Bulk inserts, updates, merges, and deletes
• Large sorts

D-8 Copyright © 2004, Oracle. All rights reserved.

When to Implement Parallel Execution

• DSS and data warehousing environments
• OLTP systems

– During batch processing
– During schema maintenance operations

D-9 Copyright © 2004, Oracle. All rights reserved.

Operations That Can Be Parallelized

• Access methods
• Join methods
• DDL
• DML
• Miscellaneous SQL operations
• Query
• SQL*Loader

D-11 Copyright © 2004, Oracle. All rights reserved.

How Parallel Execution Works

The query coordinator:
• Parses the query and determines the degree of

parallelism
• Allocates one or two sets of slaves
• Controls the query and sends instructions to the

PQ slaves
• Determines which tables or indexes need to be

scanned by the PQ slaves
• Produces the final output to the user

D-12 Copyright © 2004, Oracle. All rights reserved.

Degree of Parallelism

User
process

SELECT /*+ PARALLEL(ORDERS 2)*/ …

Server
processes

D-14 Copyright © 2004, Oracle. All rights reserved.

Parallelization Rules for SQL Statements
• A parallel query looks at every table and index in

the statement.
• The basic rule is to pick the table or index with the

largest DOP.
• For parallel DML, the reference object that

determines the DOP is the table being modified by
a DML operation.

• If the parallel DML statement includes a subquery,
the subquery’s DOP is the same as the DML
operation.

• For parallel DDL, the reference object that
determines the DOP is the table, index, or partition
that is being created, rebuilt, split, or moved.

• If the parallel DDL statement includes a subquery,
the subquery’s DOP is the same as the DDL
operation.

D-15 Copyright © 2004, Oracle. All rights reserved.

When to Parallelize a SELECT Statement

• A parallel hint
– The query includes a parallel hint specification.
– The schema objects have a PARALLEL declaration.

• One or more tables specified in the query require
one of the following:
– A full table scan
– An index range scan
– Absence of scalar subqueries are in the SELECT list.

D-16 Copyright © 2004, Oracle. All rights reserved.

Parallel DML

The DOP used is 2, as specified in the INSERT hint

UPDATE /*+ PARALLEL(SALES,4) */ SALES
SET PROD_MIN_PRICE = PROD_MIN_PRICE *1.10

ALTER SESSION FORCE PARALLEL DML

INSERT /*+ PARALLEL(new_emp,2) */ INTO new_emp
SELECT /*+ PARALLEL(employees,4) */ * FROM
employees;

D-18 Copyright © 2004, Oracle. All rights reserved.

Parallel DDL

Use default DOP

ALTER TABLE employees PARALLEL 4;

ALTER SESSION FORCE PARALLEL DDL

Use DOP of 4

ALTER TABLE employees PARALLEL;

Session override

D-20 Copyright © 2004, Oracle. All rights reserved.

Parallelization Rules

• Priority 1: PARALLEL hint
• Priority 2: PARALLEL clause or

ALTER SESSION FORCE PARALLEL …

• Priority 3: PARALLEL declaration while creating
objects

D-21 Copyright © 2004, Oracle. All rights reserved.

Displaying Parallel Explain Plans

|Id | Operation |Name |Rows |Bytes |Cost | TQ |IN-OUT|PQ Distrib|

0	SELECT STATEMENT		41	1066	4			
1	PX COORDINATOR							
2	PX SEND QC (RANDOM)	:TQ10001	41	1066	4	Q1,01	P->S	QC (RAND)
3	SORT GROUP BY		41	1066	4	Q1,01	PCWP	
4	PX RECEIVE		41	1066	4	Q1,01	PCWP	
5	PX SEND HASH	:TQ10000	41	1066	4	Q1,00	P->P	HASH
6	SORT GROUP BY		41	1066	4	Q1,00	PCWP	
7	PX BLOCK ITERATOR		41	1066	1	Q1,00	PCWC	
8	TABLE ACCESS FULL	EMP2	41	1066	1	Q1,00	PCWP	

D-23 Copyright © 2004, Oracle. All rights reserved.

Disabling Parallel Execution

ALTER SESSION DISABLE PARALLEL DML;

ALTER TABLE employees NOPARALLEL;

D-24 Copyright © 2004, Oracle. All rights reserved.

Hints for Parallel Execution

• PARALLEL

• NO_PARALLEL

• PQ_DISTRIBUTE

• PARALLEL_INDEX

• NO_PARALLEL_INDEX

D-25 Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to do the
following:
• Describe parallel execution
• Describe the types of parallelism
• Use parallel query
• Parallelize SQL statements
• View parallel queries with EXPLAIN PLAN

Copyright © 2004, Oracle. All rights reserved.

Optimizer Plan Stability

E-2 Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Identify the purpose and benefits of optimizer plan

stability
• Create stored outlines
• Use stored outlines
• Edit stored outlines
• Maintain stored outlines

E-3 Copyright © 2004, Oracle. All rights reserved.

Optimizer Plan Stability

• Enables well-tuned applications to force the use of
the desired SQL access path

• Maintains consistent execution plans through
database changes

• Is implemented using stored outlines consisting
of hints

• Groups stored outlines in categories

E-4 Copyright © 2004, Oracle. All rights reserved.

Plan Equivalence

• Plans are maintained through:
– New Oracle Database versions
– New statistics on objects
– Initialization parameter changes
– Database reorganizations
– Schema changes

• Plan equivalence can control execution plans for
third-party applications.

E-5 Copyright © 2004, Oracle. All rights reserved.

Creating Stored Outlines

• For all statements during a session:

• For a specific statement:

SQL> ALTER SESSION
2 SET create_stored_outlines = OTLN1;

SQL> SELECT ... ;
SQL> SELECT ... ;

SQL> CREATE OR REPLACE OUTLINE CU_CO_JOIN
2 FOR CATEGORY OTLN1 ON
3 SELECT co.country_name,
4 cu.cust_city, cu.cust_last_name
5 FROM countries co
6 JOIN customers cu ON

...

E-6 Copyright © 2004, Oracle. All rights reserved.

Using Stored Outlines

• Set USE_STORED_OUTLINES to TRUE or to a
category name:

• You can set CREATE_STORED_OUTLINES and
USE_STORED_OUTLINES at two levels:
– ALTER SYSTEM

– ALTER SESSION

SQL> ALTER SESSION
2 SET use_stored_outlines = OTLN1;

SQL> SELECT ...

E-7 Copyright © 2004, Oracle. All rights reserved.

Data Dictionary Information

SQL> SELECT name, category, used
2 , sql_text
3 FROM user_outlines;

SQL> SELECT node, hint
2 FROM user_outline_hints
3 WHERE name = ...;

SQL> SELECT sql_text, outline_category
2 FROM v$sql
3 WHERE ...;

E-9 Copyright © 2004, Oracle. All rights reserved.

Execution Plan Logic

In
shared
pool?

Same
outline

category?
Execute

outline plan

Query DD for
matching outline

Found? Integrate outline
and generate plan

Regular
execute

n

n y

y y

n

E-10 Copyright © 2004, Oracle. All rights reserved.

Maintaining Stored Outlines

• Use DBMS_OUTLN to:
– Drop unused outlines
– Drop categories of outlines
– Rename a category

• Use ALTER OUTLINE to:
– Rename an outline
– Rebuild an outline
– Change the category of an outline

• Outlines are stored in the OUTLN schema.

E-11 Copyright © 2004, Oracle. All rights reserved.

Maintaining Stored Outlines

SQL> BEGIN
2 dbms_outln.drop_unused;
3 dbms_outln.update_by_cat
4 ('default','otln1');
5 dbms_outln.drop_by_cat('otln1');
6 END;

E-12 Copyright © 2004, Oracle. All rights reserved.

Public Versus Private Outlines

• Public outlines
– Default setting when creating outlines
– Stored in the OUTLN schema
– Used when USE_STORED_OUTLINES is set to TRUE

or a category
• Private outlines

– Stored in the user’s schema for the duration of the
session

– Can be edited
– Used when USE_PRIVATE_OUTLINES is set to TRUE

or a category
– Changes can be saved as public outlines.

E-13 Copyright © 2004, Oracle. All rights reserved.

Outline Editing: Overview

• Stored outlines can be edited.
• Users can tune execution plans without having to

change the application.
• This is possible by editing the content of the

saved plan.

E-14 Copyright © 2004, Oracle. All rights reserved.

Outline Editing: Overview

• Outline is cloned in a staging area.
• Outline is edited in the user’s session.
• When satisfied with the result, the editor can

publicize the result to the user community.

E-15 Copyright © 2004, Oracle. All rights reserved.

Editable Attributes

• Join order
• Join methods
• Access methods
• Distributed execution plans
• Distribution methods for parallel query execution
• Query rewrite
• View and subquery merging

E-16 Copyright © 2004, Oracle. All rights reserved.

Editing Stored Outlines

To edit and use private outlines:
1. Create the outline tables in the current schema.
2. Copy the selected outline to a private outline.
3. Edit the outline that is stored as a private outline.
4. To use the private outline, set the

USE_PRIVATE_OUTLINE parameter.
5. To allow public access to the new stored outline,

overwrite the stored outline.
6. Reset USE_PRIVATE_OUTLINE to FALSE.

E-18 Copyright © 2004, Oracle. All rights reserved.

Outlines: Administration and Security

• Privileges required for cloning outlines
– SELECT_CATALOG_ROLE

– CREATE ANY OUTLINE

– EXECUTE privilege on DBMS_OUTLN_EDIT
• DBMS_OUTLN_EDIT.CREATE_EDIT_TABLES

– Creates required temporary tables in user’s schema
for cloning and editing outlines

E-19 Copyright © 2004, Oracle. All rights reserved.

Outlines: Administration and Security

• The OUTLINE_SID is available in the V$SQL fixed
view.

• OUTLINE_SID identifies the session ID from which
the outline was retrieved.

E-20 Copyright © 2004, Oracle. All rights reserved.

Configuration Parameters

USE_PRIVATE_OUTLINES is a session parameter that
controls the use of private outlines instead of public
outlines.

• TRUE enables the use of private outlines in the
DEFAULT category.

• FALSE disables use of private outlines.
• category_name enables use of private outlines in

the named category.

ALTER SESSION SET use_private_outlines =
[TRUE | FALSE | category_name];

E-21 Copyright © 2004, Oracle. All rights reserved.

Cloning Outlines

The CREATE OUTLINE command can be used to clone
outlines:
CREATE [OR REPLACE]
[PUBLIC | PRIVATE] OUTLINE [outline_name]
[FROM [PUBLIC | PRIVATE] source_outline_name]
[FOR CATEGORY category_name] [ON statement]

CREATE OR REPLACE OUTLINE public_outline2
FROM public_outline1 FOR CATEGORY cat2;

Example

E-22 Copyright © 2004, Oracle. All rights reserved.

SQL Profiles

• SQL Profiles
– Are an alternative to using hints
– Consist of auxiliary stored statistics that are

specific to a statement
– Contain execution history information about the

SQL statement that the Automatic Tuning Optimizer
uses to set optimizer parameter settings

• A SQL Profile, after being accepted, is stored
persistently in the data dictionary.

• Information about SQL Profiles can be obtained
from the DBA_SQL_PROFILES view.

E-23 Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Use stored outlines to ensure execution-plan

consistency
• Create outlines for a session or a single statement
• Organize outlines in categories
• Enable or disable using outlines or categories of

outlines
• Maintain outlines with the DBMS_OUTLN package or

the ALTER OUTLINE command

Copyright © 2004, Oracle. All rights reserved.

Statspack

F-2 Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following Use Statspack.

F-3 Copyright © 2004, Oracle. All rights reserved.

Overview of Statspack

Statspack
• collects data about high-resource SQL.
• precalculates many useful data

– cache hit ratios
– rates
– transaction statistics

• Uses permanent tables owned by the PERFSTAT
user to store performance statistics.

• Separates data collection from report generation
• Can be automated

F-4 Copyright © 2004, Oracle. All rights reserved.

Statspack Mechanism

• The PERFSTAT user is created automatically at
installation.

• PERFSTAT owns all objects needed by the
Statspack package and has query privileges on
the V$ views

• A snapshot is a single collection of performance
data, identified by a snapshot ID, which is
generated at the time the snapshot is taken.

• The performance report uses start and end
snapshot IDs and then calculates activity on the
instance between the two snapshots

F-5 Copyright © 2004, Oracle. All rights reserved.

Taking a Statistics Snapshot

SQL> variable snap number;

SQL> begin

2 :snap := statspack.snap;

3 end;

4 /

PL/SQL procedure successfully completed.

F-6 Copyright © 2004, Oracle. All rights reserved.

Automatic Statistics Gathering

• You need to take multiple snapshots over a period
of time for comparison

• To automate the collection at regular intervals use
the Oracle DBMS_JOB procedure to schedule
snapshots.

• The script SPAUTO.SQL schedules a snapshot
every hour, on the hour.

F-7 Copyright © 2004, Oracle. All rights reserved.

Generating a Performance Report

The Statspack package includes two reports.
• SPREPORT.SQL

– Covers all aspects of instance performance
– Calculates and prints ratios and differences for all

statistics between the two snapshots
– Prompts for :

The beginning snapshot ID
The ending snapshot ID
The name of the report text file to be created

• SPREPSQL.SQL

– Displays statistics, the complete SQL text, and
information on any SQL plans associated with that
statement.

F-8 Copyright © 2004, Oracle. All rights reserved.

Snapshot Levels

Additional data: Segment Level Statistics>= 7
Additional Data: SQL Plans and SQL Plan Usage>= 6

Additional Statistics: Parent and Child Latches >= 10

Additional data: SQL statements>= 5

General performance statistics>= 0
DescriptionLevel

F-9 Copyright © 2004, Oracle. All rights reserved.

Snapshot Levels

Additional data: Segment Level Statistics>= 7
Additional Data: SQL Plans and SQL Plan Usage>= 6

Additional Statistics: Parent and Child Latches >= 10

Additional data: SQL statements>= 5

General performance statistics>= 0
DescriptionLevel

F-10 Copyright © 2004, Oracle. All rights reserved.

Altering Snapshot Defaults

SQL> EXECUTE STATSPACK.MODIFY_STATSPACK_PARAMETER

(i_snap_level=>10, i_buffer_gets_th=>10000,

i_disk_reads_th=>1000);

SQL> EXECUTE STATSPACK.SNAP(i_snap_level=>10,

i_modify_parameter=>'true');

SQL> EXECUTE STATSPACK.SNAP(i_snap_level=>6);

F-12 Copyright © 2004, Oracle. All rights reserved.

Removing Statspack Data

• Use the SPPURGE.SQL script
• Deletes snapshots that fall between the begin and

end snapshot IDs you specify

F-13 Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned about the use
of Statspack in statistics gathering.

	cover page
	course overview
	lesson 1
	lesson 2
	lesson 3
	lesson 4
	lesson 5
	lesson 6
	lesson 7
	lesson 8
	lesson 9
	lesson 10
	lesson 11
	lesson 12
	lesson 13
	lesson 14
	appendix D
	appendix E
	appendix F

